科目名	解析学Ⅱ(エンジニアリング系)1組 <m科></m科>
科目名(英字)	Analysis II
ナンバリング	A3C003
年次	1年次
単位数	2
期間	前期
 担当者	板倉 恭平(イタクラ キョウヘイ)

授業のねら い・概要 1次元の現象を扱うための基礎知識として、極限、導関数、不定積分、定積分に関する理論および計算を修得する。微分、積分は工学部の様々い・概要 な分野で用いられる主要な道具であり、専門分野やそれ以外の分野を学ぶ上でも必要な知識となる。

授業計画

	テーマ	内容・方法等	予習/復習			
第1回	+	逆三角関数について学 び、極限の基本的な性 質と計算を学ぶ。	【予】三角関数を復習し、教科書、逆三角関数を調べてまとめる、【復】逆三角関数限についてできなかった問い、わからなかった例題を自分で解いてみる。(3時間)			
第2回	初等 関数 の 分1	初等関数について、極限、導関数の基本的な理論と計算を学ぶ。	【予】解析学 「演習、微分計算を復習し、教科書、逆三角関数の導関数を調べてまとめる。【復】微分計算についてできなかった問い、わからなかった例題を自分で解いてみる。(3時間)			
第3回	+ 初等 関数 の 分2	パラメータ表示された関数、陰関数の導関数、 高次導関数について学ぶ。	【予】教科書,関数のパラメータ表示、陰関数、高次導関数を調べてまとめる、【復】、パラメータ表示された関数、陰関数の微分計算、高次導関数についてできなかった問い,わからなかった例題を自分で解いてみる. (4時間)			
第4回	不定 形の 極限	極限の復習をし、不定 形の極限について学 ぶ。	【予】教科書,極限、微分計算の問いを復習し,忘れている箇所は解いてみる。不定形の極限を認めでおく、【復】不定形の極限についてできなかった問い,わからなかった例題を自分で解いてみる。(4時間)			
第5回	+ 関の 関の 関の 関係 関係 関係 関係 関係 関係 関係 関係 関係 関係 関係 関係 関係	マクローリン近似の意味、性質、計算について学ぶ。	【予】教科書,微分計算の問いを復習し,忘れている箇所は解いてみる.教科書,マクローリン近を調べてまとめる.【復】マクローリン近似についてできなかった問い,わからなかった例題を自分解いてみる.(6時間)			
第6回	+ 関の の の り り り り り り り り り り り り り り り り	マクローリンの定理、テ ーラー近似、マクローリ ン展開を学ぶ。	【予】前回のマクローリン近似の問いを復習し、忘れている箇所は解いてみる。教科書、テイラー) 似、マクローリン展開を調べてまとめる。【復】マクローリン近似、テイラー近似、マクローリン展開 説明してみる。できなかった問い、わからなかった例題を自分で解いてみる。応用問題も解いてみ る。(5時間)			
第7回	+ の似展3 不積1 数近と開 定分	オイラーの公式を学ぶ。 基本的な関数の原始 関数と不定積分の性 質、基本的な積分計算 を学ぶ。	【予】前回のマクローリン展開を復習し、教科書、オイラーの公式、不定積分を調べてまとめる。 【復】オイラーの公式、不定積分について、できなかった問い、わからなかった例題を自分で解いる。 「みる」(5時間)			
第8回	+ · - 不定 - 積分 - 2	置換積分、部分積分を学ぶ。	【予】教科書,不定積分,置換積分,部分積分を調べてまとめる.【復】不定積分,置換積分,部分積分についてできなかった問い,わからなかった例題を自分で解いてみる.応用問題も解いてみる.(4時間)			
第9回	+ 不定 積分 3	有理関数の不定積分を学ぶ。	【予】教科書,有理関数の積分を調べてまとめる.【復】有理関数の積分についてできなかった問い、わからなかった例題を自分で解いてみる. (4時間)			
---- 第10回	+ 初等 的な 微分	微分方程式の初歩を学 ぶ。				

	└ 方程 ├ 式	 	
第11回	 定積 分1	定積分の定義と性質、 定積分の計算法を学 ぶ。	【予】教科書,不定積分計算の問いを復習し,忘れている箇所は解いてみる.定積分(定義,性質,計算)を調べてまとめる.【復】定積分(定義,性質,計算)についてできなかった問い,わからなかった例題を自分で解いてみる.(4時間)
第12回	· · 定積 · 分2	定積分の計算法(置換 積分、部分積分)およ び広義積分(無限区 間)を学ぶ。	【予】教科書,定積分の計算、広義積分を調べてまとめる。【復】広義積分についてできなかった問い、わからなかった例題を自分で解いてみる。(5時間)
第13回	· 定積 · 分3	広義積分(非有界関数 など)を学ぶ。定積分の 応用(面積など)を学 ぶ。	【予】教科書,広義積分、積分の応用を調べてまとめる.【復】広義積分、積分の応用についてできなかった問い,わからなかった例題を自分で解いてみる.(5時間)
第14回	- 定分応用まめ よと	定積分の応用(曲線の 長さなど)を学ぶ。 ま とめをする。	【予】教科書. 積分の応用を調べてまとめる.【復】積分の応用についてできなかった問い, わからなかった例題を自分で解いてみる. 応用問題も解いてみる. (4時間)

工学部ディプロマポリシーにおける「技術者に求められる幅広い教養」および専門科目に関する項目を支える知識,技能の修得を念頭に,以下の目標到達に向けて取り組むこと。

到達目標

- (1) 授業に積極的に参加し、課題に取り組むことができる。[態度]
 (2) 導関数の計算ができる。[知識・理解]
 (3) マクローリン近似を理解し、近似式の計算ができる。[知識・理解]
 (4) 初等関数を理解し、積分(広義積分を含む)の計算ができる。[知識・理解]
 (5) 初等的な微分方程式を解くことができる。[知識・理解]
 (6) 微分,積分の応用問題を解くことができる。また、適切な記述をすることができる。[知識・応用] [技能]

【学科ごとの学習・教育到達目標】 M科(B) D科 ◎A-1

評価方法

到達目標(1)は授業、演習、課題により評価する. 到達目標(2)-(6)は「課題または小テスト」、「まとめ課題、または記述テスト」により評価する. 「演習、課題、小テスト」(30%)、「まとめ課題、記述テスト」(70%)の割合とする。 課題等に関する詳細な説明は最初の講義時に担当者が公表する。 * 状況により変更の可能性があります。

到達目標(1)は他項目を満たすための必要最低限の条件であり、(2)および(3)はどちらも達成目標(必達)で必ず身につけるべき内容である. 到達目標(1)(2)(3)のいずれかを達成していない場合は「評価F」とする. また、(1)(2)(3)を達成したうえで、(1)-(6)を評価し ほぼすべての目標に達していれば「評価A」 およそ8割の達成度で「評価C」 およそ7割の達成度で「評価C」 およそ6割の達成度で「評価D」 6割に満たない場合は「評価F」とする。

成績評価 基準

教科書

書名		著者名	出版社名
h		+	+
1. 微積分~講義・演習テキスト	(第2版)	服部哲也	学術図書出版社

参考書

「解析学Ⅱ演習」と同時受講が望ましい。

受講心得

小テスト等は返却または解説するので、復習しておくこと。詳細は担当者が説明する。

講義で学んだ事柄を必ず復習し、例題にならい問を解いて次回の講義に備えてほしい。

フォローアップ期間に授業等はしないので、その期間で各自14週目でまとめた内容を確認し、この授業で学んだ内容の定着をはかること。わからないことがあればそのままにせず質問に来ること。

オフィスアワー

月曜日から金曜日までの5限(7号館9階 数学研究室) または 当該授業時間の前後で質問等の対応をする。

実践的教育