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Geometric Characterizations and Symmetric Relations 
between Standard Normal Distribution and Inverse Mills Ratio 
based on Pythagorean Theorem
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Slopes as Probabilities of standard normal distribution 
are connected to the right triangle 
by Pythagorean theorm geometrically. 
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All points whithin the circle and square are converging at 
one point practically because their pobability points are 0.
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Green dashed lines are probability density functions (PDF): f(x),
Red dashed lines are cumulative distribution functions (CDF): F(x),
Purple 1-dot chain lines are integrals of cumulative distribution functions,
Red dotted lines are 1.0,
Purple dotted lines are asymptotic lines whose slopes are 1.0.

(a) Type of a triangular distribution (b) Type of a uniform distribution (c) Type of an exponential distribution

(d) Type of a normal distribution

First concepts are shown as integral forms of cumulative distribution functions.
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If we think of the repetition game of 
coin tossing with a constant fee,
we show you two parabolic 
curves of the performances 
both winners and losers.

We find that 
the maximal profit of winners 
is equal to its fee based on 
27 percent probability.
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If we consider 1 and 1, we can estimate the equilibrium point as . The integral results are as follows. 
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0.  Background

 We present the geometric characterizations and symmetric relations between standard normal distribution and inverse Mills ratio 
by circles and squares from the viewpoint with considering the height of densities such as ancient Egyptian drawing styles and using 
the Greek Pythagorean Theorem.
 First, we can clarify the integral forms of various cumulative distribution functions including standard normal distribution based 
on the aspect ratio (=1.0, see 1).
 Second, we reconsider what the several times of standard deviations multiplied by the square root of the time mean with their 
positive and negative expectations multiplied by the time under the condition the aspect ratio=1.0 (see 2). At this time, we can 
understand the following things.
 (1)   We can find the equilibrium formulation at any real numbers of the time t (see 2).  
 (2)  Its constant number, 0.612003, was found by Karl Pearson about 100 years ago.
 (3)  Sir David Roxbee Cox reconfirmed the value to cluster the normal distribution.
 (4)  Truman Lee Kelley also proposed the 27 percent rule formulation. 
 Third, we can show the parabola for maximal profits including fees. And that is equal to its fee based on the 27 percent 
probability. In addition to these tendencies, we can clarify the relations between winners, losers, and their banker (see 3).
 Fourth, we can understand two types of ordinary differential equations to explain that with circles and squares (see 4). One is the 
Bernoulli differential equation of inverse Mills ratio. The other is the second order linear differential equation of the integral of 
cumulative normal distribution function (see 1). From these tendencies, we can also get the modified intercept forms geometrically 
and symmetrically for maximal profits of winners, these losses of losers, and their banker’s fee. We can understand that these 
equations should be changing the probability points and these probabilities based on Pythagorean Theorem correctly. If the 
probability point is that found by Karl Pearson, we can show you that it is the special point of standard normal distribution such as Sir 
Cox’s proposal. Other point on the right triangle with 3:4:5 is also the third quantile of standard normal distribution.
 Finally, we can also realize there are many similar tendencies close to the relations between circles and squares such as Vitruvian 
man by Da Vinci and various Mandalas although there might not be related to normal distribution directly and historically. The 
ancient Egyptian drawing styles enable us to illustrate the geometric characterizations and symmetric relations between standard 
normal distribution and inverse Mills ratio with circle and square based on the Pythagorean theorem in the ancient Greece. We think 
that our ideas shall be contributed in the statistical modelling and these evaluation fields since our suggested figures should be much 
more easily understood and powerful than we thought.
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Pythagorean Triangles 
show the probabilities 
as CDFs.
Inverse Mills Ratios 
and PDFs are 
discribed as 
Modified 
Intercept 
Forms. 
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Concluding Remarks
We can understand that the slopes should be the probabilites of 
standard normal distribution based on the probability points.
And above numbers are also the special probability points.
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Our concept of the integration of standard normal disribution with a square and a circle is similar to “Mandala” and 
“Vitruvian Man” which is one of da Vinci’s works coincidentally. The original reference websites are 
 https://en.wikipedia.org/wiki/Mandala,
 https://ja.wikipedia.org/wiki/曼荼羅 , 
       https://en.wikipedia.org/wiki/Vitruvian_Man (Access date: July, 3rd, 2017).
Moreover, we are able to refer the idea and figure of Prof. Ida’s website which is discribed that the ratio 
should be less than the inverse number of the golden ratio.
 Reference:  Ida, T., “Vitruvian Man by Leonardo da Vinci and the Golden Ratio” ,
 http://www.crl.nitech.ac.jp/~ida/education/VitruvianMan/index.html (Access date: July, 3rd, 2017).

We estimate the practical approximated value such as “Squaring the circle” which is simmilar to a problem 
proposed by ancient geometers.  https://en.wikipedia.org/wiki/Squaring_the_circle (Access date: November 18th, 2017)
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1.  First concept as integrals of various cumulative distributions

2.  Second concept as distances of probability points based on the time t. There should be maximal losses 
against the positive returns or maximal profits against the negative returns by the 27 percent probabilities.

3.  Relations between winners, losers, 
and their banker by the equilibrium formulation 
                                    and                                  
       

4.  Main concept as the relations between Pythagorean theorem, 
differential equations, circles, and squares 
on standard normal distribution

( ) 0.2702678λΦ − =0.612003tα λ
σ

= =

5.  Special case as the geometric characterizations
and rotationally symmetric relations between 
winners, losers, and their banker based on the 
condition:                         and
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Visualizations of Sinusoidal Spirals, Limacons of Pascal, 
and Conic Curves using Equiangular Spirals of 
Secondary Metallic Ratios

2.  Second concept as distances of probability points based on the time t. There should be maximal losses 
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Conic curves, sinusoidal spirals, equiangular spirals, and Limacons of Pascal

Conic curves such as parabolas, hyperbolas, and ellipses
in addition to cardioids, lemniscates, lines, circles, points, 
Cayley’s sextics, Tschirnhausen cubics, 
and Limacons of Pascal.
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Harmonies about weighted Pythagorean theorem and generalized Fibonacci 
sequences using related right triangles of secondary metallic ratios
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Limacon of Pascal, cardioid, 
and circle with right triangles
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Secondary Metallic Ratios

Equiangular Spirals

This study aims to investigate the geometry of secondary metallic ratios proposed by de Spinadel in the poster 
of this conference. Equiangular spirals and related right triangles using the secondary metallic ratios indicate various
fundamental shapes based on sinusoidal spirals coincidentally. The relation between the order of sinusoidal spirals 
and x-th power of the equiangular spirals should be verified as a simple unique equation precisely. Conic curves such as
parabolas, hyperbolas, and ellipses with two types of equiangular spirals create geometrically beautiful harmonies with 
some sinusoidal spirals such as cardioids, lemniscates, Cayley’s sextics, and Tschirnhausen cubics from artistic 
viewpoint respectively. Similarly, limacons of Pascal including cardioids can be illustrated concisely using the reverses 
of related right triangles based on equiangular spirals. Even though we explain that in the field of the plane geometry,
we can also display the lemniscates with toruses and hyperbolas with cones as 3-dimensinal graphics to confirm 
the concepts using the equiangular spirals and related right triangles more theoretically.

Conic Curves

The circles, cardioids, and limacons of Pascal
with right triangles

 
Limacons of Pascal
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