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Formulation of the Einstein equations is one of the necessary implements for realizing
long-term stable and accurate numerical simulations. We demonstrate our re-formulation
scheme, adjusted ADM systems, that intends to construct a dynamical system which evolves
toward the constraint surface as the attractor, by adjusting ADM evolution equations with
constraints. Our 3-dimensional numerical evolution of Teukolsky wave data under periodic
boundary condition shows the life-time of simulation can be four-times longer than that of
the standard ADM system.

In 2005-2006, several groups independently announced the success of the inspi-
ral black-hole binary merger.1)–3) There are many implements for their successes,
such as gauge conditions, coordinate selections, boundary treatments, singularity
treatments, numerical discretization, and mesh refinements, together with the re-
formulation of the Einstein equations which we discuss here.

There are many approaches to re-formulate the Einstein equations for obtaining
a long-term stable and accurate numerical evolution (e.g. see references in4)). In
a series of our works,5)–8) we have proposed to construct a system that has its
constraint surface as the attractor. By applying eigenvalue analysis of constraint
propagation equations, we showed that there is a constraint-violating mode in the
standard Arnowitt-Deser-Misner (ADM) evolution system,which has been used for
simulations over 20 years, when it is applied to a single non-rotating black-hole
space-time.7)
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Fig. 1. Comparisons of numerical evolutions

of adjusted ADM systems, using Teukolsky

wave propagation.

Our basic idea can be described in
general form as follows. Suppose we
have a dynamical system of variables
ua(xi, t), which has evolution equations,

∂tu
a = f(ua, ∂iu

a, · · · ), (0.1)

and the (first class) constraints,

Cα(ua, ∂iu
a, · · · ) ≈ 0. (0.2)

We propose to investigate the evolution
equation of Cα (constraint propagation)

∂tC
α = g(Cα, ∂iC

α, · · · ), (0.3)

for evaluating violation features of con-
straints.
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The character of constraint propagation, (0.3), will change when we modify the
original evolution equations. Suppose we modify (adjust) (0.1) using constraints

∂tu
a = f(ua, ∂iu

a, · · · ) + F (Cα, ∂iC
α, · · · ), (0.4)

with a function F (Cα, · · · ), then (0.3) will also be modified as

∂tC
α = g(Cα, ∂iC

α, · · · ) + G(Cα, ∂iC
α, · · · ), (0.5)

which implies the adjustment F (Cα, · · · ) changes the nature of (0.3).
We have proceeded an eigenvalue analysis of the whole RHS in (0.3) and (0.5)

after a suitable homogenization,

∂tĈ
α = ĝ(Ĉα) = Mα

βĈβ , where C(x, t)α =
∫

Ĉ(k, t)α exp(ik · x)d3k, (0.6)

and conjectured that the system is more stable, if the eigenvalues of Mα
β has a

negative real-part or non-zero imaginary-part .5)–8)

For the ADM system,

∂tγij = −2αKij + ∇iβj + ∇jβi (0.7)

∂tKij = αR
(3)
ij + αKKij − 2αKikK

k
j −∇i∇jα + 2(∇(iβ

k)Kj)k + βk∇kKij(0.8)

we7) investigated effective adjustments systematically using the Hamiltonian con-
straint, H := R(3) + K2 − KijK

ij , and the momentum constraint, Mi := ∇jK
j
i −

∇iK. Among then a combination proposed by Detweiler9) passes above criteria.
In Fig.1, we demonstrate numerical evolutions of ADM-Detweiler system;

∂tγij = eq.(0.7) − κ1α
3γijH

∂tKij = eq.(0.8) + κ1α
3(Kij − (1/3)Kγij)H + κ2αγijγ

kl ∂kMl

+κ1α
2[3(∂(iα)δk

j) − (∂lα)γijγ
kl]Mk + κ1α

3[δk
(iδ

l
j) − (1/3)γijγ

ki](∇kMl).

We plot the violation of H versus time for Teukolsky wave evolution with harmonic
slicing, and with periodic boundary condition in our 3-dimensional code. We see
that the evolution by the ADM-Detweiler system with tuned κ1 can realize more
than four-times longer stable evolution than that of the standard ADM system. (We
simply cut off the adjusted term at a certain absolute value of H.)

The similar results are obtained also in the adjusted BSSN formulation,8) which
is reported by Kiuchi and Shinkai.10)
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