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Abstract
With the aim of numerical investigations of spacetime dynamics in higher curva-
ture models, we present the basic equations of the Einstein-Gauss-Bonnet gravity
theory. We show (N + 1)-dimensional version of the ADM decomposition including
Gauss-Bonnet terms, and also show conformally-transformed constraint equations for
obtaining an initial data.

1 Introduction

One of the most surprising achievements in studies of general relativity (GR) is the singularity theorems
established by Hawking and Penrose in 1960s. It states that the spacetime singularities inevitably occur
(or occurred) under natural conditions within the framework of GR. This fact implies that GR cannot
describe whole of the spacetime structure, and GR itself is incomplete as a physics theory since an
appearance of singularity makes the future unpredictable.

One of the remedy of this paradox is the cosmic censorship conjecture proposed by Penrose. The
conjecture states that any singularity is hidden inside an event horizon in the process of gravitational
collapse, and is causally disconnected from our side of spacetime. However, it is also true that this
censorship does not essentially solve the break-down of GR at the singularity, and also that the initial
singularity at the birth of the universe, which is the consequence of the standard Big-Bang scenario, can
not be resolved. Therefore, we expect that the true fundamental theory will resolve this problematic
singularity treatment.

Up to now, several quantum theories of gravity have been proposed. Among them superstring/M-
theory, formulated in higher dimensional spacetime, is the most promising candidate. We are still far
from understanding the non-perturbative aspects of the theory, but perturbative treatments of string
effects to classical gravity theory begin revealing new features of the spacetime.

One of the typical string effects can be seen in a series of studies of cosmological models, which is
called string cosmology [1] or pre-Big-Bang scenario [2]. Although these analysis show that the singularity
problem has not been resolved yet, there are some cosmological solutions which do not start from an initial
singularity.

Another attractive proposal is the brane-world model of the Universe [3]; a picture that we live
on a four-dimensional timelike hypersurface embedded in higher-dimensional bulk spacetime. Since the
fundamental scale of the brane-world model could be around TeV scale, the model is thought to be tested
using the large hadron collider (LHC) by monitoring the creations and evaporations of tiny black holes[4].

Along to such a theoretical developments, we are planning to promote a direct numerical approach
to investigate non-linear dynamics in higher-dimensional and/or higher curvature gravitational models
both for singularity structure and cosmological models. This article is the first step; we rewrite the
fundamental equations into a suitable form for future numerical treatments.

The standard numerical approach is to treat the spacetime as a Cauchy problem. We therefore apply
the ADM formalism of GR for the (N + 1)-dimensional Einstein-Gauss-Bonnet gravity theory. The
Gauss-Bonnet terms are the next leading order of the α′-expansion of type IIB superstring theory, where
α′ is the inverse string tension [5], so that the first model to be investigated. In §2.1, we show that the set
of equations are divided into two constraints and evolution equations along to the standard procedure.
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In §2.2, we present the conformal approach to solve the constraints which shall be used for preparing an
initial data. All the details will be reported elsewhere[6].

2 Equations in Einstein-Gauss-Bonnet gravity

2.1 Equations to solve

We consider (N + 1)-dimensional spacetime (M, gµν) which is described by the Einstein-Gauss-Bonnet
action: ∗

S =
∫
M

dN+1X
√
−g

[
1

2κ2
(R− 2Λ + αGBLGB) + Lmatter

]
, (1)

with LGB = R2 − 4RµνRµν + RµνρσRµνρσ, (2)

where κ2 is the (N + 1)-dimensional gravitational constant, R, Rµν , Rµνρσ and Lmatter are the (N + 1)-
dimensional scalar curvature, Ricci tensor, Riemann curvature and the matter Lagrangian, respectively.

The action (1) gives the gravitational equation as

Gµν + αGBHµν = κ2 Tµν , (3)

where Gµν = Rµν − 1
2
gµνR+Λgµν , (4)

Hµν = 2
[
RRµν − 2RµαRα

ν − 2RαβRµανβ + R αβγ
µ Rναβγ

]
− 1

2
gµνLGB , (5)

and Tµν = −2
δLmatter

δgµν
+ gµνLmatter. (6)

We define the projection operator to N -dimensional (spacelike or timelike) hypersurface, Σ, ⊥µν =
gµν − εnµnν , where nµ is the unit-normal vector to Σ with nµnµ = ε, with which we define nµ is timelike
(if ε = −1) or spacelike (if ε = 1). Σ is spacelike (timelike) if nµ is timelike (spacelike). We define the
induced N -dimensional metric γij as γij = ⊥ij , and the extrinsic curvature Kij as Kij = −⊥α

i⊥
β
j∇αnβ .

The projections of the gravitational equation can be the following three:(
Gµν + αGBHµν

)
nµ nν = κ2 Tµν nµ nν =: κ2ρH , (7)(

Gµν + αGBHµν

)
nµ ⊥ν

ρ = κ2 Tµν nµ ⊥ν
ρ =: −κ2Jρ, (8)(

Gµν + αGBHµν

)
⊥µ

ρ ⊥ν
σ = κ2 Tµν ⊥µ

ρ ⊥ν
σ =: κ2Sρσ, (9)

where we defined Tµν = ρHnµnν + Jµnν + Jνnµ + Sµν , which gives T = −ρH + S`
`.

Following the standard procedure of the ADM formulation, we find the equations, eq. (7)-(9), corre-
spond to (a) the Hamiltonian constraint equation:

M + αGB

(
M2 − 4MabM

ab + MabcdM
abcd

)
= −2εκ2Tµνnµnν , (10)

(b) the momentum constraint equation:

Ni + 2αGB

(
MNi − 2M a

i Na + 2MabNiab − M cab
i Nabc

)
= −κ2Tµνnµγν

i , (11)

and (c) the evolution equations for γij :

Mij −
1
2
Mγij − ε

(
−KiaKa

j + γijKabK
ab − £nKij + γijγ

ab£nKab

)
+ 2αGB

[
Hij + ε

(
M£nKij − 2M a

i £nKaj − 2M a
j £nKai − W ab

ij £nKab

)]
= κ2Tµνγµ

iγ
ν
j ,(12)

∗The Greek indices move 1, · · · , N + 1, while the Latin indices move 1, · · · , N .
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respectively, where

Mijkl = Rijkl − ε(KikKjl − KilKjk), (13)
Nijk = DiKjk − DjKik, (14)
Hij = MMij − 2(MiaMa

j + MabMiajb) + MiabcM
abc

j

−2ε

[
−KabK

abMij −
1
2
MKiaKa

j + KiaKa
bM

b
j + KjaKa

bM
b
i + KacK b

c Miajb

+NiNj − Na(Naij + Naji) −
1
2
NabiN

ab
j − NiabN

ab
j

]
−1

4
γij

[
M2 − 4MabM

ab + MabcdM
abcd

]
−εγij

[
KabK

abM − 2MabK
acK b

c − 2NaNa + NabcN
abc

]
, (15)

W kl
ij = Mγijγ

kl − 2Mijγ
kl − 2γijM

kl + 2Miajbγ
akγbl , (16)

and these contracted variables; Mij = γabMiajb, M = γabMab, and Ni = γabNaib. Note that the terms
of £nKµν appear only in the linear form. This is due to the quali-linear property of the Gauss-Bonnet
gravity.

2.2 Conformal Approach to solve the Constraints

In order to prepare an initial data for numerical evolution, we have to solve two constraints, (10) and
(11). The standard approach [7] is to apply conformal transformation between the initial trial metric γ̂ij

and the solution γij , as
γij = ψ2mγ̂ij , (17)

and solve for ψ. (We generalized the power to 2m here.) For N -dimensional spacetime, Ricci scalar is
transformed as

R̃ = ψ−2mR − 2(N − 1)(∆ψ)ψ−2m−1 − (N − 1)
[
2 − (N − 2)m

]
m(∇ψ)2ψ−2m−2,

from which we specify m = 2/(N − 2) for simplifying the equation.
Regarding to the extrinsic curvature, we decompose Kij into its trace part, K = γijKij , and traceless

part, Aij = Kij − 1
N γijK, and assume the conformal transformation as

Aij = ψ`Âij . (18)

The conformal transformation of the divergence DjA
ij becomes

DjA
ij = ψ−4m+`D̂jÂ

ij + ψ−4m+`−1
[
` + m(N − 2)

]
ÂijD̂jψ, (19)

which indicates to set ` = −m(N − 2) = −2 for simplifying the equation.
We introduce the longitudinal part of Âij , Âij

L = Âij − Âij
TT , where D̂jÂ

ij
TT = 0, and express Âij

L with
a vector potential Âij

L = D̂iW j + D̂jW i − 2
N γ̂ijD̂kW k.

We also assume the conformal transformation of matter terms as ρ = ψ−nρ̂ and J i = ψ−4m+`Ĵ i, and
assume K = K̂, then two constraints, (10) and (11), can be written as

4
N − 1
N − 2

∆̂ψ = R̂ψ − (ÂijÂ
ij)ψ(−3N+2)/(N−2) +

[
N − 1

N
K2 − 2Λ − 16πGρ̂ψ−n

]
ψ(N+2)/(N−2)

+αGB

(
M2 − 4MabM

ab + MabcdM
abcd

)
ψ(N+2)/(N−2) (20)

and

∆̂W i +
N − 2

N
D̂iD̂kW k + R̂i

kW k =
N − 1

N
ψ2N/(N−2)D̂iK̂ + 8πGĴ i

−2αGB

(
MN i − 2M iaNa + 2MabN i

ab − M iabcNbca

)
. (21)
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Note that we do not transformed Gauss-Bonnet terms in these expression, since they produce higher-
power terms in ψ. Therefore we have to proceed iterative schemes for solving both (20) and (21) updating
the trial metric as γ̂ij |new = ψ

4N/(N−2)
old γ̂ij |old. Although there is no proof to guarantee the existence

of a solution in such a system, our numerical code obtains converged solutions. We will report details
elsewhere.

2.3 Evolution equations

The Einstein evolution equation in general N -dimensional ADM version is presented in [8]. With the
Gauss-Bonnet terms, the evolution equation, (12), cannot be expressed explicitly for each £nKij . That
is, eq. (12) is rewritten as

(1 + 2αGBM)£nKij − (hijh
ab + 2αGBW ab

ij )£nKab − 8αGBM a
(i £nK|a|j)

= −ε

(
Mij −

1
2
Mhij

)
− KiaKa

j + hijKabK
ab + εκ2Tµνhµ

ih
ν
j − 2εαGBHij , (22)

and the second and third terms in RHS include the mixing terms between £nKij . Therefore, in an actual
simulation, we have to evolve γij and Kij in each step simultaneously using a matrix form of (22) like

£nγ11

£nγ12

£nγ13

...
£nK11

£nK12

£nK13

...


=


O O

O Mixing





£nγ11

£nγ12

£nγ13

...
£nK11

£nK12

£nK13

...


+



K11

K12

K13

...

Source


.

We are now developing our numerical code and hope to present some results elsewhere near future.
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