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We review recent efforts to re-formulate the Einstein equations for fully relativistic numerical
simulations. The so-called numerical relativity is a promising research field matching with ongo-
ing gravitational wave observations. In order to complete long-term and accurate simulations of
binary compact objects, people seek a robust set of equations against the violation of constraints.
Many trials have revealed that mathematically equivalent sets of evolution equations show different
numerical stabilities in free evolution schemes. In this article, we overview the efforts of the commu-
nity, categorizing them into three directions: (1) modifying of the standard Arnowitt-Deser-Misner
(ADM) equations initiated by the Kyoto group [the so-called Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) equations], (2) rewriting the evolution equations in a hyperbolic form, and (3) construct-
ing an “asymptotically constrained” system. We then introduce our series of works that tries to
explain these evolution behaviors in a unified way by using an eigenvalue analysis of the constraint-
propagation equations. The modifications of (or adjustments to) the evolution equations change the
character of constraint propagation, and several particular adjustments using constraints are ex-
pected to damp the constraint-violating modes. We show several sets of adjusted ADM and BSSN
equations, together with their numerical demonstrations.
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I. INTRODUCTION

A. Overview

The theory of general relativity describes the nature
of the strong gravitational field. The Einstein equation
predicts quite unexpected phenomena, such as gravita-
tional collapse, gravitational waves, the expanding uni-
verse, and so on, which are all attractive not only for
researchers but also for the public. The Einstein equa-
tion consists of 10 partial differential equations (ellip-
tic and hyperbolic) for 10 metric components, and it
is not easy to solve them for any particular situation.
Over the decades, people have tried to study the general-
relativistic world by finding its exact solutions, by devel-
oping approximation methods, or by simplifying the situ-
ations. While “The Exact Solution” book [70] says there
were more than 4000 publications on exact solutions be-
tween 1980 and 2000, direct numerical integration of the
Einstein equations can be said to be the most robust way
to study the strong gravitational field. This research field
is often called “numerical relativity.”

With the purpose of predicting precise gravitational
waveforms from coalescences of binary neutron-stars
and/or black-holes, numerical relativity has been devel-
oped over the past three decades. The difficulty of nu-
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merical integrations of the Einstein equations arises from
the mathematical complexity of the equations, the phys-
ical difficulty of singularity treatments, and high-level re-
quirements for computational skills and technology.

In 2005-2006, several groups independently announced
that simulations of the inspiral black-hole binary merger
were available [14, 26, 31, 54, 69]. There are many im-
plements for their successes, such as gauge conditions,
coordinate selections, boundary treatments, singularity
treatments, numerical discretization, and mesh refine-
ments, together with the re-formulation of the Einstein
equations which we will discuss here. More general and
recent introductions to numerical relativity are available,
e.g. those by Baumgarte-Shapiro (2003) [16], Alcubierre
(2004) [3], Pretorius (2007) [55], and Bruegmann (2008)
[23].

The purpose of this article is to review the formula-
tion problem in numerical relativity. This is one of the
essential issues to achieve long-term stable, and accurate
simulations of binary compact objects. Mathematically
equivalent sets of evolution equations show different nu-
merical stabilities in free evolution schemes. This had
been a mystery for a long time between relativists, and
many proposals and trials were reported. After we review
the problem from such a historical viewpoint, we will
explain our systematic understanding by using the con-
straint propagation equations; the evolution equations
of the constraints which is supposed to be satisfied all
through the time evolutions.

Most numerical relativity groups today use the
so-called BSSN (Baumgarte-Shapiro-Shibata-Nakamura)
equations, which represents a modified form of the ADM
(Arnowitt-Deser-Misner) equations. We try to explain



2

why these differences appear. We also predict that more
robust sets of equations exist and give actual numerical
demonstrations.

B. Formulation Problem in Numerical Relativity

There are several different approaches to simulating
the Einstein equations. Among them, the most robust
way, which we target in this article, is to apply 3+1 (space
+ time) decomposition of space-time. This formulation
was first given by Arnowitt, Deser, and Misner (ADM)
[12] (we call this the original ADM system, hereafter)
with the purpose of constructing a canonical formulation
of the Einstein equations to seek the quantum nature of
space-time. In the late 70s, when numerical relativity
started, this ADM formulation was introduced by Smarr
and York [68, 79] in slightly different notations which
is taken as the standard formulation between numerical
relativists (we call this the standard ADM system, here-
after).

The ADM formulation divides the Einstein equations
into constraint equations and evolution equations, like
the Maxwell’s equations. Since the set of ADM equations
form a first-class system, if we solved two constraint equa-
tions, the Hamiltonian (or energy) constraint and the
momentum constraint equations for the initial data, then
the evolution equations theoretically guarantees that the
evolved data will satisfy the constraint equations. This
free-evolution approach is also the standard in numeri-
cal relativity, because solving the constraints (non-linear
elliptic equations) is numerically expensive and because
the free-evolution allows us to monitor the accuracy of
the numerical evolution by using the constraint equa-
tions.

Up to the middle of the 90s, ADM numerical relativity
had appealed great successes. For example, the forma-
tion of naked singularity from collisionless particles[60]
shows the unknown behavior of the strong gravity; the
discovery of the critical behavior for a black-hole for-
mation [28] open doors to the understanding of phase-
transition nature in general relativity; the black-hole
horizon dynamics [11] realized theoretical predictions.

Nevertheless, when people try to make long-term sim-
ulations, such as coalescences of neutron-star binaries,
and/or black-hole binaries for calculating gravitational-
wave form, numerical simulations were often interrupted
by unexplained blow-ups or divergences (Fig. 1). This
was thought to be due to the lack of resolution, inappro-
priate gauge choice, or the particular numerical scheme
that was applied. However, with the accumulation of
experience, people have noticed the importance of the
formulation of the evolution equations, because there are
apparent differences in numerical stability although the
equations are mathematically equivalent.

At this moment, there are three major ways to obtain
longer time evolutions, which we describe in the next
section. Of course, the ideas, procedures, and problems
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FIG. 1: Origin of the problem for numerical relativists: Nu-
merical evolutions depart from the constraint surface.

are mingled with each other. The purpose of this article
is to review all three approaches and to introduce our
idea to view them in a unified way. The author wrote a
detail review of this topic in 2002 [65], and the present
article includes an update in brief style.

The word stability is used in quite different ways in the
community.

• We mean by numerical stability a numerical simu-
lation which continues without any blow-ups and
in which data remain on a constrained surface.

• Mathematical stability is defined in terms of the
well-posedness in the theory of partial differential
equations, such that the norm of the variables is
bounded by the initial data. See Eq. (28) and the
following paragraphs.

• For numerical treatments, there is also another no-
tion of stability, the stability of finite differencing
schemes. This means that numerical errors (trun-
cation, round-off, etc.) do not grow by evolution.
The evaluation is obtained using von Neumann’s
analysis. Lax’s equivalence theorem says that if a
numerical scheme is consistent (converging to the
original equations in its continuum limit) and sta-
ble (no error growth), then the simulation repre-
sents the right (converging) solution. See Ref. [27]
for the Einstein equations.

We follow the notations of Misner-Thorne-Wheeler
[50]. We use µ, ν = 0, · · · , 3 and i, j = 1, · · · , 3 as space-
time indices. The unit c = 1 is applied. The discussion
is mostly for the vacuum space-time, but the inclusion of
matter is straightforward.
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II. THE STANDARD WAY AND THE THREE
OTHER ROADS

A. Strategy 0: The ADM formulation

1. The original ADM formulation

The Arnowitt-Deser-Misner (ADM) formulation[12]
gave the fundamental idea of time evolution of space and
time: such as foliations of 3-dimensional hypersurface
(Fig. 2). The story begins by decomposing 4-dimensional
space-time into 3 plus 1. The metric is expressed by

ds2 = gµνdxµdxν

= −α2dt2 + γij(dxi + βidt)(dxj + βjdt), (1)

where α and βj are defined as α ≡ 1/
√

−g00 and βj ≡
g0j , and are called the lapse function and the shift vector,
respectively. The projection operator or the intrinsic 3-
metric gij is defined as γµν = gµν + nµnν , where nµ =
(−α, 0, 0, 0) [and nµ = gµνnν = (1/α,−βi/α)] is the unit
normal vector of the spacelike hypersurface, Σ (see Fig.
2). By introducing the extrinsic curvature,

Kij = −1
2
£nγij , (2)

and using the Gauss-Codacci relation, the Hamiltonian
density of the Einstein equations can be written as

HGR = πij γ̇ij − L, (3)

where

L =
√
−gR = α

√
γ[(3)R − K2 + KijK

ij ], (4)

with πij being the canonically conjugate momentum to
γij ,

πij =
∂L
∂γ̇ij

= −√
γ(Kij − Kγij), (5)

omitting the boundary terms. The variation of HGR

with respect to α and βi yields the constraints, and

the dynamical equations are given by γ̇ij =
δHGR

δπij
and

π̇ij = −δHGR

δhij
.

2. The standard ADM formulation

In the version of Smarr and York[68, 79], Kij was used
as a fundamental variable instead of the conjugate mo-
mentum πij . The set of equation is summarized as fol-
lows:

¤Box.1
The Standard ADM formulation [68, 79]
The fundamental dynamical variables are (γij , Kij), the
three-metric and the extrinsic curvature. The three-
hypersurface Σ is foliated with gauge functions, (α, βi),
the lapse, and the shift vector.

coordinate constant line
surface normal line

N dt

Ni dt

Σ(t)

 Σ(t+dt)
lapse function, N

shift vector, Ni

A

A'A"

t = constant hypersurface

FIG. 2: Concept of time evolution of space-time: foliations of
a 3-dimensional hypersurface. The lapse and the shift func-
tions are often denoted as α or N , and as βi or N i, respec-
tively.

• The evolution equations:

∂tγij = −2αKij + Diβj + Djβi, (6)

∂tKij = α (3)Rij + αKKij − 2αKikKk
j − DiDjα

+(Diβ
k)Kkj + (Djβ

k)Kki + βkDkKij(7)

where K = Ki
i, and (3)Rij and Di denote the

three-dimensional Ricci curvature and a covariant
derivative on the three-surface, respectively.

• Constraint equations:

HADM := (3)R + K2 − KijK
ij ≈ 0, (8)

MADM
i := DjK

j
i − DiK ≈ 0, (9)

where (3)R =(3) Ri
i: these are called the Hamilto-

nian (or energy) and momentum constraint equa-
tions, respectively. ¤

The formulation has 12 first-order dynamical variables
(γij ,Kij), with 4 freedom of gauge choices (α, βi) and
with 4 constraint equations, Eqs. (8) and (9). The rest
freedom expresses two modes of gravitational waves.

We remark that there is one replacement in Eq. (7)
by using Eq. (8) in the process of conversion from the
original ADM to the standard ADM equations. This is
the key issue in the later discussion, and we shall come
back to this point in Section III B.

The constraint propagation equations, which are the
time evolution equations of the Hamiltonian constraint,
Eq. (8), and the momentum constraints, Eq. (9), can be
written as follows:

¤Box.2
Constraint Propagations of the Standard ADM:

∂tH = βj(∂jH) + 2αKH− 2αγij(∂iMj)

+α(∂lγmk)(2γmlγkj − γmkγlj)Mj

−4γij(∂jα)Mi, (10)

∂tMi = −(1/2)α(∂iH) − (∂iα)H + βj(∂jMi) + αKMi

−βkγjl(∂iγlk)Mj + (∂iβk)γkjMj . ¤ (11)

From these equations, we know that if the constraints are
satisfied on the initial slice Σ, then the constraints are
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FIG. 3: Chronological table of formulations and their numerical tests (∼ 2001). Boxed ones are proposals of formulations, and
circled ones are related numerical experiments. Please refer to Table 1 in Ref. [65] for each reference.

satisfied throughout the evolution. The normal numerical
scheme is to solve the elliptic constraints for preparing
the initial data and to apply the free evolution (solving
only the evolution equations). The constraints are used
to monitor the accuracy of the simulations.

The ADM formulation was the standard formulation
for numerical relativity up to the middle 90s. Numerous
successful simulations were obtained for the problems of
gravitational collapse, critical behavior, cosmology, and
so on. However, stability problems have arisen for simu-
lations such as the gravitational radiation from compact
binary coalescence because the models require quite a
long-term time evolution.

The origin of the problem was that the above state-
ment in italics is true in principle, but is not always true
in numerical applications. A long history of trial and er-
ror began in the early 90s. From the next subsection, we
shall look back on them by summarizing “three strate-
gies.” We then unify these three roads as “adjusted sys-
tems,” and as its by-product, we show that the standard
ADM equations have a constraint violating mode in the
constraint propagation equations even for a single black-
hole (Schwarzschild) spacetime [64]. Figures 3 and 4 are
chronological maps of the research.

B. Strategy 1: Modified ADM formulation by
Nakamura et al. (The BSSN formulation)

Up to now, the most widely used formulation for large-
scale numerical simulations has been the modified ADM
system, which is now often cited as the Baumgarte-

Shapiro-Shibata-Nakamura (BSSN) formulation. This
re-formulation was first introduced by Nakamura et al.
[52, 53, 61]. The usefulness of this re-formulation was
re-introduced by Baumgarte and Shapiro [15], and was
then confirmed by other groups to show a long-term sta-
ble numerical evolution [4, 5].

1. Basic variables and equations

The widely used notation[15] introduces the variables
(ϕ, γ̃ij , K, Ãij , Γ̃i) instead of (γij , Kij), where

ϕ =
1
12

log(detγij), (12)

γ̃ij = e−4ϕγij , (13)

K = γijKij , (14)

Ãij = e−4ϕ(Kij − (1/3)γijK), (15)

Γ̃i = Γ̃i
jkγ̃jk. (16)

The new variable Γ̃i is introduced in order to calculate
the Ricci curvature more accurately. In the BSSN formu-
lation, the Ricci curvature is not calculated as RADM

ij =
∂kΓk

ij−∂iΓk
kj+Γl

ijΓ
k
lk−Γl

kjΓ
k
li, but as RBSSN

ij = Rϕ
ij+R̃ij ,

where the first term includes the conformal factor ϕ while
the second term does not. These are approximately
equivalent, but RBSSN

ij apparently does have a wave op-
erator in the flat background limit so that we can expect
a more natural wave propagation behavior.

Additionally, the BSSN requires us to impose the con-
formal factor as γ̃(:= detγ̃ij) = 1 during evolution. This
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FIG. 4: Chronological table of formulations and their numerical tests (2001 ∼). Boxed ones are proposals of formulations, and
circled ones are related numerical experiments.

is a kind of definition, but can also be treated as a con-
straint.

¤Box.3
The BSSN formulation [15, 52, 53, 61]:
The fundamental dynamical variables are (ϕ, γ̃ij , K, Ãij ,
and Γ̃i). The three-hypersurface Σ is foliated with gauge
functions, (α, βi), the lapse and the shift vector.

• The evolution equations:

∂B
t ϕ = −(1/6)αK + (1/6)βi(∂iϕ) + (∂iβ

i), (17)

∂B
t γ̃ij = −2αÃij + γ̃ik(∂jβ

k) + γ̃jk(∂iβ
k)

−(2/3)γ̃ij(∂kβk) + βk(∂kγ̃ij), (18)

∂B
t K = −DiDiα + αÃijÃ

ij + (1/3)αK2 + βi(∂iK),(19)

∂B
t Ãij = −e−4ϕ(DiDjα)TF + e−4ϕα(RBSSN

ij )TF

+αKÃij − 2αÃikÃk
j + (∂iβ

k)Ãkj + (∂jβ
k)Ãki

−(2/3)(∂kβk)Ãij + βk(∂kÃij), (20)

∂B
t Γ̃i = −2(∂jα)Ãij + 2α

(
Γ̃i

jkÃkj − (2/3)γ̃ij(∂jK)

+6Ãij(∂jϕ)
)
− ∂j

(
βk(∂kγ̃ij) − γ̃kj(∂kβi)

−γ̃ki(∂kβj) + (2/3)γ̃ij(∂kβk)
)
. (21)

• Constraint equations:

HBSSN = RBSSN + K2 − KijK
ij , (22)

MBSSN
i = MADM

i , (23)

Gi = Γ̃i − γ̃jkΓ̃i
jk, (24)

A = Ãij γ̃
ij , (25)

S = γ̃ − 1. ¤ (26)

Equations (22) and (23) are the Hamiltonian and the mo-
mentum constraints (the “kinematic” constraints) while
the latter three are “algebraic” constraints due to the
requirements of the BSSN variables.

2. Remarks, pros and cons

Why is the BSSN better than the standard ADM?
Together with numerical comparisons with the standard
ADM case[5], this question has been studied by many
groups using different approaches.

• Using numerical test evolutions, Alcubierre et al.
[4] found that the essential improvement is in the
process of replacing terms by the momentum con-
straints. They also pointed out that the eigenvalues
of the BSSN evolution equations have fewer “zero
eigenvalues” than those of ADM, and they conjec-
tured that the instability might be caused by these
“zero eigenvalues.”

• Miller[49] reported that the BSSN had a wider
range of parameters that gave stable evolutions in
the von Neumann’s stability analysis.

• An effort was made to understand the advantage
of the BSSN from the point of hyperbolization of
the equations in the linearized limit [4, 57] or with
a particular combination of slicing conditions plus
auxiliary variables[43]. If we define the 2nd-order
symmetric hyperbolic form, then the principal part
of the BSSN can be one of them[41].
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As we discussed in Ref. [77], the stability of the BSSN
formulation is due not only to the introductions of new
variables but also to the replacement of terms in the evo-
lution equations by using constraints. Further, we can
show several additional adjustments to the BSSN equa-
tions, which give us more stable numerical simulations.
We will devote Section III to this fundamental idea.

The current binary black-hole simulations apply the
BSSN formulations with several implementations. For
example,

tip-1 Alcubierre et al. [5] reported that the trace-out Aij

technique at every time-step helped the stability.

tip-2 Campanelli et al. [26] reported that in their codes
Γ̃i was replaced by −∂j γ̃

ij where it was not differ-
entiated.

tip-3 Baker et al. [14] modified the Γ̃i-equation, Eq.
(21), as suggested by Yo et al. [73].

These technical tips are again explained by using the
constraint propagation analysis as we will do in Section
III C 1.

These studies provide evidence regarding the advan-
tage of the BSSN while it is also shown an example of
an ill-posed solution in the BSSN (as well in the ADM)
by Frittelli and Gomez [37]. Recently, the popular com-
bination, BSSN with Bona-Masso type slicing condition,
was investigated. Garfinkle et al. [39] speculated that
the reason for gauge shocks being missing in the current
3-dimensional black-hole simulations is simply the lack
of resolution.

C. Strategy 2: Hyperbolic re-formulations

1. Definitions, properties, mathematical backgrounds

The second effort to re-formulate the Einstein equa-
tions is to make the evolution equations reveal a first-
order hyperbolic form explicitly. This is motivated by the
expectations that the symmetric hyperbolic system has
well-posed properties in its Cauchy treatment in many
systems and that the boundary treatment can be im-
proved if we know the characteristic speed of the system.

¤Box.4
Hyperbolic formulations
We say that the system is a first-order (quasi-linear)
partial differential equation system, if a certain set of
(complex-valued) variables uα (α = 1, · · · , n) forms

∂tuα = Mlβ
α(u) ∂luβ + Nα(u), (27)

where M (the characteristic matrix) and N are functions
of u, but do not include any derivatives of u. Further, we
say the system is

• a weakly hyperbolic system if all the eigenvalues of
the characteristic matrix are real,

• a strongly hyperbolic system (or a diagonalizable /
symmetrizable hyperbolic system) if the character-
istic matrix is diagonalizable (has a complete set of
eigenvectors) and has all real eigenvalues, and

• a symmetric hyperbolic system if the characteristic
matrix is a Hermitian matrix. ¤

Writing the system in a hyperbolic form is a quite use-
ful step in proving that the system is well-posed. Math-
ematical well-posedness of the system means (1◦) local
existence (of at least one solution u), (2◦) uniqueness
(i.e., at most solutions), and (3◦) stability (or contin-
uous dependence of solutions {u} on the Cauchy data)
of the solutions. The resultant statement expresses the
existence of the energy inequality on its norm,

||u(t)|| ≤ eατ ||u(t = 0)||,
where 0 < τ < t, α = const. (28)

This indicates that the norm of u(t) is bounded by a
certain function and the initial norm. We remark that
this mathematical bounds does not mean that the norm
u(t) decreases along the time evolution.

The inclusion relation of the hyperbolicities is

symmetric hyperbolic ⊂ strongly hyperbolic
⊂ weakly hyperbolic. (29)

The Cauchy problem under weak hyperbolicity is not,
in general, C∞ well-posed. At the strongly hyperbolic
level, we can prove the finiteness of the energy norm if
the characteristic matrix is independent of u (cf. [71]),
that is, one step definitely advanced over a weakly hyper-
bolic form. Similarly, the well-posedness of the symmet-
ric hyperbolic is guaranteed if the characteristic matrix
is independent of u while if it depends on u, we have only
limited proofs for the well-posedness.

From the point of numerical applications, to hyper-
bolize the evolution equations is quite attractive, not only
for its mathematically well-posed features. The expected
additional advantages are the following:

(a) It is well known that a certain flux conservative
hyperbolic system is taken as an essential formula-
tion in the computational Newtonian hydrodynam-
ics when we control shock wave formations due to
matter.

(b) The characteristic speed (eigenvalues of the prin-
cipal matrix) is supposed to be the propagation
speed of the information in that system. Therefore,
it is naturally imagined that these magnitudes are
equivalent to the physical information speed of the
model to be simulated.

(c) The existence of the characteristic speed of the
system is expected to give us an improved treat-
ment of the numerical boundary and/or to give us
a new well-defined Cauchy problem within a finite
region (the so-called initial boundary value prob-
lem; IBVP).
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These statements sound reasonable, but have not yet
been generally confirmed in actual numerical simulations
in general relativity.

2. Hyperbolic formulations of the Einstein equations

Most physical systems can be expressed as symmetric
hyperbolic systems. In order to prove that the Einstein’s
theory is a well-posed system, to hyperbolize the Einstein
equations is a long-standing research area in mathemat-
ical relativity.

The standard ADM system does not form a first-order
hyperbolic system. This can be seen immediately from
the fact that the ADM evolution equation, Eq. (7), has
a Ricci curvature in the right-hand-side. This is also a
common fact in the BSSN formulation.

So far, several first-order hyperbolic systems of the
Einstein equation have been proposed. In constructing
hyperbolic systems, the essential procedures are (1◦) to
introduce new variables, normally the spatially deriva-
tived metric, (2◦) to adjust equations using constraints,
and occasionally (3◦) to restrict the gauge conditions,
and/or (4◦) to rescale some variables. Due to process
(1◦), the number of fundamental dynamical variables is
always larger than that of the ADM.

Due to the limitation of space, we can only list several
hyperbolic systems of the Einstein equations:

• The Bona-Massó formulation [19, 20]

• The Einstein-Ricci system [1, 29] / Einstein-
Bianchi system [9]

• The Einstein-Christoffel system [10]

• The Ashtekar formulation [13, 74]

• The Frittelli-Reula formulation [38, 71]

• The Conformal Field equations [33]

• The Bardeen-Buchman system [17]

• The Kidder-Scheel-Teukolsky (KST) formulation
[45]

• The Alekseenko-Arnold system [8]

• The general-covariant Z4 system [18]

• The Nagy-Ortiz-Reula (NOR) formulation [51]

• The Weyl system [32, 34]

Note that there are no apparent differences between the
word ‘formulation’ and ‘system’ here.

3. Numerical tests

When we discuss hyperbolic systems in the context
of numerical stability, the following questions should be
considered:

Q: From the point of the set of evolution equations,
does hyperbolization actually contribute to numer-
ical accuracy and stability? Under what condi-
tions/situations will the advantages of hyperbolic
formulation be observed?

Unfortunately, we do not have conclusive answers to
these questions, but much experience is being accumu-
lated. Several earlier numerical comparisons reported the
stability of hyperbolic formulations [20, 21, 58, 59], but
we have to remember that this statement went against
the standard ADM formulation.

These partial numerical successes encouraged the com-
munity to formulate various hyperbolic systems. How-
ever, several numerical experiments also indicate that
this direction is not a complete success:

• Above earlier numerical successes were also termi-
nated with blow-ups.

• If the gauge functions evolve according to the hy-
perbolic equations, then their finite propagation
speeds may cause pathological shock formations in
simulations [2, 6].

• There are no drastic differences in the evolu-
tion properties between hyperbolic systems (weakly,
strongly and symmetric hyperbolicity) for the sys-
tematic numerical studies by Hern [42] based on
Frittelli-Reula formulation [38], and by the authors
[63] based on Ashtekar’s formulation [13, 74].

• Proposed symmetric hyperbolic systems were not
always the best ones for numerical evolution. Peo-
ple are normally still required to re-formulate them
for suitable evolution. Such efforts are seen in the
applications of the Einstein-Ricci system [59], the
Einstein-Christoffel system [17], and so on.

• If we can erase the non-principal part by suit-
able re-definitions of variables (as in the KST
formulation)[45], then we can see the growth of the
energy norm, Eq. (28), in the numerical evolution,
as theoretically predicted [25, 48]. We then see cer-
tain differences in the long-term convergence fea-
tures between weakly and strongly hyperbolic sys-
tems.

Of course, these statements are only for a particular for-
mulation, so we have to be careful not to over-emphasize
the results.
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4. Remarks

In order to figure out the reasons for the above objec-
tions, it is worth stating the following cautions:

(a) Rigorous mathematical proofs of well-posedness of
PDE are mostly for simple symmetric or strongly
hyperbolic systems. If the matrix components or
coefficients depend on dynamical variables (as in all
any versions of hyperbolized Einstein equations),
almost nothing has been proved for more general
situations.

(b) The statement of “stability” in the discussion of
well-posedness refers to the bounded growth of the
norm, Eq. (28), and does not indicate a decay of
the norm in the time evolution.

(c) The discussion of hyperbolicity only uses the char-
acteristic part of the evolution equations and ig-
nores the rest.

We think the origin of confusion in the community re-
sults from over-expectation for the above issues. Mostly,
point (c) is the biggest problem. The above numerical
claims based on the Ashtekar[63, 75] and the Frittelli-
Reula [42] formulations were mostly due to the contribu-
tion (or interposition) of non-principal parts in the evo-
lution. Regarding this issue, the KST formulation finally
opens the door. KST’s “kinematic” parameters enable
us to reduce the non-principal part, so numerical experi-
ments are hopefully expected to represent predicted evo-
lution features from PDE theories. At this moment, the
agreement between numerical behavior and theoretical
prediction is not yet perfect, but is close [48].

If further studies reveal direct correspondences be-
tween theories and numerical results, then the direction
of hyperbolization will remain as the essential approach
in numerical relativity, and the related IBVP research
[24, 35, 47, 56, 71] will become a main research subject
in the future. Meanwhile, it would be useful if we had an
alternative procedure to predict stability, including the
effects of the non-principal parts of the equations. Our
proposal of an adjusted system in the next subsection
may be one.

D. Strategy 3: Asymptotically constrained systems

The third strategy is to construct a robust system
against the violation of constraints, such that the con-
straint surface is an attractor (Fig. 5). The idea was first
proposed as “λ-system” by Brodbeck et al. [22] and was
then developed in more general situations as “adjusted
system” by the authors [75].

time

er
ro

r

Blow up

Stabilize?

?

t=0 

Constrained  Surface

(satisfies  Einstein's constraints)

FIG. 5: Idea of an “asymptotically constrained system.”

1. The “λ-system”

Brodbeck et al. [22] proposed a system which had
additional variables λ that obeyed artificial dissipative
equations. The variable λ is supposed to indicate the vi-
olation of constraints and the target of the system is to
get λ = 0 as its attractor.

¤Box.5
The “λ-system” (Brodbeck et al.) [22]:
For a symmetric hyperbolic system, add additional vari-
ables λ and an artificial force to reduce the violation of
constraints. The procedure is as follows:

1. Prepare a symmetric hyperbolic evolution system

∂tu = M∂iu + N. (30)

2. Introduce λ as an indicator of a violation of the
constraint which obeys dissipative equations of mo-
tion:

∂tλ = αC − βλ, (α 6= 0, β > 0). (31)

3. Take a set of (u, λ) as dynamical variables

∂t

(
u
λ

)
'

(
A 0
F 0

)
∂i

(
u
λ

)
. (32)

4. Modify the evolution equations so as to form a
symmetric hyperbolic system

∂t

(
u
λ

)
=

(
A F̄
F 0

)
∂i

(
u
λ

)
. ¤ (33)
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Since the total system is designed to have symmetric hy-
perbolicity, the evolution is supposed to be unique. Brod-
beck et al. showed analytically that such a decay of λ’s
can be seen for sufficiently small λ(> 0) with a choice of
appropriate combinations of α’s and β’s.

Brodbeck et al. presented a set of equations based
on the Frittelli-Reula’s symmetric hyperbolic formulation
[38]. The version of Ashtekar’s variables was presented
by the authors [62] for controlling the constraints or re-
ality conditions or both. The numerical tests of both
the Maxwell-λ-system and the Ashtekar-λ-system were
performed [75] and were confirmed to work as expected.
The λ-system version of the general-covariant Z4 sys-
tem [18] is also presented [40]. Pretorius [54] applied
this “constraint-damping” idea in his harmonic system
to perform his binary black-hole merger simulations.

Although it is questionable whether the recovered so-
lution is a true evolution or not [67], we think the idea
is quite attractive. To enforce the decay of errors in its
initial perturbative stage seems the key to the next im-
provements, which are also developed in the next section
on “adjusted systems.”

However, there is a high price to pay for constructing
a λ-system. The λ-system cannot be introduced gener-
ally because (i) the construction of the λ-system requires
the original evolution equations to have a symmetric hy-
perbolic form, which is quite restrictive for the Einstein
equations, (ii) the final system requires many additional
variables and we also need to evaluate all the constraint
equations at every time step, which is a hard task in
computation, and (iii) it is not clear that the λ-system is
robust enough for non-linear violation of constraints or
that λ-system can control constraints that do not have
any spatial differential terms.

2. The “adjusted system”

Next, we propose an alternative system, which also
tries to control the violation of the constraint equations
actively, which we named the “adjusted system.” We
think that this system is more practical and robust than
the previous λ-system. The essentials are summarized as
follows:

¤Box.6
The adjusted system (procedures):

1. Prepare a set of evolution equations

∂tu = J∂iu + K. (34)

2. Add constraints in the right-hand-side

∂tu = J∂iu + K +κC︸ ︷︷ ︸ . (35)

3. Choose the coefficient (or Lagrange multiplier) κ
so as to make the eigenvalues of the homogenized

adjusted ∂tC equations negative real values or pure
imaginary values

∂tC = D∂iC + EC (36)
∂tC = D∂iC + EC +F∂iC + GC︸ ︷︷ ︸ . ¤ (37)

The process of adjusting equations is a common tech-
nique in other re-formulating efforts, as we reviewed.
However, we try to employ the evaluation process of con-
straint amplification factors as an alternative guideline
to hyperbolization of the system. We will explain these
issues in the next section.

III. A UNIFIED TREATMENT: ADJUSTED
SYSTEM

This section is devoted to present our idea of an
“asymptotically constrained system.” The original ref-
erences can be found in Refs. [75], [76], [64] and [77].

A. Procedures: Constraint Propagation Equations
and Proposals

Suppose we have a set of dynamical variables ua(xi, t),
and their evolution equations

∂tu
a = f(ua, ∂iu

a, · · · ), (38)

and the (first class) constraints

Cα(ua, ∂iu
a, · · · ) ≈ 0. (39)

Note that we do not require that Eq. (38) form a first-
order hyperbolic form. We propose to investigate the
evolution equation of Cα (constraint propagation),

∂tC
α = g(Cα, ∂iC

α, · · · ), (40)

for predicting the violation behavior of the constraints in
time evolution. We do not mean to integrate Eq. (40)
numerically together with the original evolution equa-
tions, Eq. (38), but mean to evaluate them analytically
in advance in order to re-formulate Eq. (38).

There may be two major analyses of Eq. (40): (a)
the hyperbolicity of Eq. (40) when Eq. (40) is a first-
order system, and (b) the eigenvalue analysis of the whole
RHS in Eq. (40) after a suitable homogenization. As we
mentioned in Section IIC 4, one of the problems in the
hyperbolic analysis is that it only discusses the principal
part of the system. Thus, we prefer to proceed down the
road (b).

¤Box.7
Constraint Amplification Factors (CAFs):

We propose to homogenize Eq. (40) by using a Fourier
transformation, e.g.,

∂tĈ
α = ĝ(Ĉα) = Mα

βĈβ ,

where C(x, t)ρ =
∫

Ĉ(k, t)ρ exp(ik · x)d3k, (41)
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and then to analyze the set of eigenvalues, say Λ’s, of
the coefficient matrix Mα

β in Eq. (41). We call the Λ’s
the constraint amplification factors (CAFs) of Eq. (40).
¤

The CAFs predict the evolutions of the constraint vio-
lations. We, therefore, can discuss the “distance” to the
constraint surface by using the “norm” or “compactness”
of the constraint violations (although we do not have ex-
act definitions of these “· · · ” words).

The next conjecture seems to be quite useful to predict
the evolution features of the constraints:

¤Box.8
Conjecture on CAFs

(A) If CAF has a negative real-part (the constraints are
forced to be diminished), then we see a more stable
evolution than a system which has positive CAF.

(B) If CAF has a non-zero imaginary-part (the con-
straints are propagating away), then we see a more
stable evolution than a system which has zero CAF.
¤

We found that the system became more stable when
more Λ’s satisfied the above criteria. (The first obser-
vations were in the Maxwell and Ashtekar formulations
[63, 75].) Actually, supporting mathematical proofs are
available when we classify the fate of the constraint prop-
agations as follows.

¤Box.9
Classification of Constraint Propagations:

If we assume that avoiding the divergence of the con-
straint norm is related to the numerical stability, the next
classifications would be useful:

(C1) Asymptotically constrained: All the constraints
decay and converge to zero.
This case can be obtained if and only if all the real
parts of the CAFs are negative.

(C2) Asymptotically bounded: All the constraints are
bounded at a certain value. (This includes the
above asymptotically constrained case.)
This case can be obtained if and only if (a) all the
real parts of CAFs are not positive and the con-
straint propagation matrix Mα

β is diagonalizable,
or (b) all the real parts of the CAFs are not posi-
tive and the real part of the degenerated the CAFs
is not zero.

(C3) Diverge: At least one constraint will diverge.
¤

The details are shown in Ref. [78]. A practical procedure
for this classification is drawn in Fig. 6.

The above features of the constraint propagation, Eq.
(40), will differ when we modify the original evolution
equations. Suppose we add (adjust) the evolution equa-
tions by using the constraints

∂tu
a = f(ua, ∂iu

a, · · · ) + F (Cα, ∂iC
α, · · · ); (42)

Q1:  Is there a CAF whose real part is positive?

NO / YES

Q2:  Are all the real parts of CAFs negative?

Q3:  Is the constraint propagation matrix diagonalizable?

Q4:  Is a real part of the degenerated CAFs zero?

NO / YES

NO / YES

YES / NO

Diverge

Asymptotically 
Constrained

Asymptotically 
Bounded

Diverge

Asymptotically 
Bounded

Q5:  Is the associated Jordan matrix  diagonal?

NO / YES Asymptotically 
Bounded

FIG. 6: Flowchart to classify the constraint propagations.

then, Eq. (40) will also be modified as

∂tC
α = g(Cα, ∂iC

α, · · · ) + G(Cα, ∂iC
α, · · · ). (43)

Therefore, the problem is how to adjust the evolution
equations so that their constraint propagations satisfy
the above criteria as much as possible.

B. Applications 1: Adjusted ADM Formulations

1. Adjusted ADM equations

Generally, we can write the adjustment terms to Eqs.
(6) and (7) using Eqs. (8) and (9) with the following com-
binations (using up to the first derivatives of constraints
for simplicity):

¤Box.10
The adjusted ADM formulation [64]:

Modify the evolution equations (γij ,Kij) by using con-
straints H and Mi, i.e.,

∂tγij = (6) +PijH + Qk
ijMk

+pk
ij(∇kH) + qkl

ij(∇kMl), (44)

∂tKij = (7) +RijH + Sk
ijMk

+rk
ij(∇kH) + skl

ij(∇kMl), (45)

where P,Q,R, S and p, q, r, s are multipliers. According
to this adjustment, the constraint propagation equations
are also modified as

∂tH = (10) + additional terms, (46)
∂tMi = (11) + additional terms. ¤ (47)

We show two examples of adjustments here. Several
others are shown in Table 3 of Ref. [64].

1. The standard ADM vs. original ADM
The first comparison is to show the differences
between the standard ADM [79] and the original
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FIG. 7: Demonstration of numerical evolutions between adjusted ADM systems: especially the standard ADM system and
Detweiler’s modified ADM system. The L2 norm of the constraints HADM is plotted as a function of time. The model is
the propagation of a Teukolsky wave in a periodical 3-dimensional box. k is the parameter in Detweiler’s adjustment [kL in
Eq.(49)-(52)], with fixed-k cases (left panel) and with fixed-and-turnoff-k cases (right panel). We see that the life-time of the
simulation becomes four-times longer than that of the standard ADM by tuning the parameter k.

ADM system [12] (see Section IIA). In the nota-
tion of Eqs. (44) and (45), the adjustment

Rij = κF αγij , (48)

(and set the other multipliers zero) will distinguish
the two, where κF is a constant. Here κF = 0 cor-
responds to the standard ADM (no adjustment),
and κF = −1/4 corresponds to the original ADM
(without any adjustment to the canonical formula-
tion by ADM). As one can check by using Eqs. (46)
and (47), adding the Rij term keeps the constraint
propagation in a first-order form. Frittelli [36] (see
also Ref. [76]) pointed out that the hyperbolicity
of the constraint propagation equations is better in
the standard ADM system. This stability feature
is also confirmed numerically, and we set our CAF
conjecture so as to satisfy this difference.

2. Detweiler type
Detweiler [30] found that with a particular com-
bination, the evolution of the energy norm of the
constraints, H2+M2, can be negative definite when
we apply the maximal slicing condition, K = 0. His
adjustment can be written in our notation in Eqs.
(44) and (45) as

Pij = −κLα3γij , (49)

Rij = κLα3(Kij − (1/3)Kγij), (50)

Sk
ij = κLα2[3(∂(iα)δk

j) − (∂lα)γijγ
kl], (51)

skl
ij = κLα3[δk

(iδ
l
j) − (1/3)γijγ

kl], (52)

and everything else is zero, where κL is a mul-
tiplier. Detweiler’s adjustment, Eqs. (49)-(52),

does not put a constraint propagation equation to
a first-order form, so we cannot discuss hyperbol-
icity or the characteristic speed of the constraints.
From a perturbation analysis on the Minkowskii
and Schwarzschild space-time, we confirmed that
Detweiler’s system provides better accuracy than
the standard ADM, but only for small positive κL.

We made various predictions how additional adjusted
terms will change the constraint propagation [64, 76].
In that process, we applied the CAF analysis for
Schwarzschild spacetime and found when and where the
negative real or non-zero imaginary eigenvalues of the
homogenized constraint propagation matrix appear and
how they depend on the choice of coordinate system
and adjustments. We found that there was a constraint-
violating mode near the horizon for the standard ADM
formulation and that the constraint-violating mode could
be suppressed by adjusting equations and by choosing an
appropriate gauge conditions.

2. Numerical demonstrations and remarks

Systematic numerical comparisons are in progress, and
we show two sample plots here. Fig. 7 is the case of a
Teukolsky wave [72] propagating under a 3-dimensional
periodic boundary condition. Both the standard ADM
system and the Detweiler system [one of the adjusted
ADM systems with adjustments Eqs. (49)-(52)] are com-
pared with the same numerical parameters. Plots are the
L2 norm of the Hamiltonian constraint HADM , i.e., the
violation of constraints, and we see the life-time of the
standard ADM evolution ends at t = 200. However, if we
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chose a particular value of κL [multiplier in Eqs. (49)-
(52)], we observe that violation of constraints is reduced
compared to the standard ADM case and that the sim-
ulation can continue longer than that (left panel). If we
further tuned κL, say turn-off to κL = 0 when the total
L2 norm of HADM is small, then we can see that the
constraint violation is somewhat maintained at a small
level, and a more long-term stable simulation is available
(right panel).

During the comparisons of adjustments, we found that
it is necessary to create a time asymmetric structure of
the evolution equations in order to force the evolution
onto the constraint surface. There are an infinite number
of ways to adjust the equations, but we found that if
we followed the next guideline, then such an adjustment
would give us a time-asymmetric evolution.

¤Box.11
Trick to obtain asymptotically constrained system:
= Break the time reversal symmetry (TRS) of the evolu-
tion equation.

1. Evaluate the parity of the evolution equation.
By reversing the time (∂t → −∂t), there are vari-
ables that change their signatures (parity (−)) [e.g.,
Kij , ∂tγij ,Mi, · · · ], while not (parity (+)) [e.g.,
gij , ∂tKij ,H, · · · ].

2. Add adjustments that have different parities of that
equation.
For example, for the parity (−) equation ∂tγij , add
a parity (+) adjustment κH. ¤

One of our criteria, the negative real CAFs, requires
breaking the time-symmetric features of the original evo-
lution equations. Such CAFs are obtained by adjusting
the terms that break the TRS of the evolution equations,
and this is available even for the standard ADM system.

C. Applications 2: Adjusted BSSN formulations

1. Constraint propagation analysis of the BSSN equations

In order to understand the stability property of the
BSSN system, we studied the structure of the evolution
equations, Eqs. (17)-(21), in detail, especially how the
modifications using the constraints, Eqs. (22)-(26), af-
fect the stability [77]. We investigated the signature of
the eigenvalues of the constraint propagation equations
and showed that the standard BSSN dynamical equations
were balanced from the viewpoint of constrained propa-
gations, including a clarification of the effect of the re-
placement by using the momentum constraint equation,
which was reported by Alcubierre et al. [4].

Moreover, we predicted that several combinations
of modifications had a constraint-damping nature and
named them the adjusted BSSN systems. Several ad-
justed BSSN systems are proposed in Table II of Ref.
[77].

Yo et al. [73] immediately applied one of our propos-
als to their simulations of a stationary rotating black hole
and reported that one adjustment contributed to main-
taining their evolution of the Kerr black hole (J/M up
to 0.9M) for a long time (t ∼ 6000M). Their results also
indicate that the evolved solution is closer to the exact
one, that is, the constrained surface.

Now, let us make clear some current technical tips
listed in Section II B 2 by using a constraint propagation
analysis.

tip-1 The trace-out Aij technique can be explained that
the violation of the A-constraint, Eq. (25), affects
all other constraint violations. (See the full set of
constraint propagation equations in the Appendix
of Ref. [77].)

tip-2 The replacement of Γ̃i enables to maintain the G-
constraint, Eq. (24), that delays the violation of
HBSSN and MBSSN

i . (Again, the statement comes
from the full set of constraint propagation equa-
tions. )

2. Numerical demonstrations

We recently presented our numerical comparisons of
the three kinds of adjusted BSSN formulation[46]. We
performed the three testbeds: gauge-wave, linear wave,
and Gowdy-wave tests, proposed by the Mexico workshop
[7] on the formulation problem of the Einstein equations.
We observed that the signature of the proposed Lagrange
multipliers were always right and that the adjustments
improved the convergence and the stability of the simula-
tions. When the original BSSN system already shows sat-
isfactory good evolutions (e.g., linear wave test), the ad-
justed versions also coincide with those evolutions while
in some cases (e.g., gauge-wave or Gowdy-wave tests),
the simulations using the adjusted systems last 10 times
as long as those using the original BSSN equations.

Fig. 8 show a comparison between the (plain) BSSN
system and the adjusted BSSN system in the Ã-equation
by using the momentum constraint

∂tÃij = ∂B
t Ãij + κAαD̃(iMj), (53)

where κA is predicted (from the eigenvalue analysis)
to be positive in order to damp the constraint viola-
tions. The testbed is a one-dimensional gauge-wave, the
trivial Minkowski space-time, but sliced with the time-
dependent 3-metric. The poor performance of the plain
BSSN system for this test has been already reported [44],
and one remedy is to apply a 4th-order finite differencing
scheme [80]. The plots show that our adjusted system
also improved the life-time of the plain BSSN simulation
by at least 10 times with better convergence.
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FIG. 8: One-dimensional gauge-wave test with the BSSN system (left) and the adjusted BSSN system (right) in the Ã-equation,
Eq. (53). The L2 norm of H, rescaled by the resolution parameter ρ2/4, is plotted as a function of the crossing-time. The
wave amplitude is set to 0.01, and we choose the adjustment parameter κA = 0.005. The BSSN system loses convergence at an
early time, near the 20 crossing-time, and it will produce blow-ups of the calculation in the end, while in the adjusted version
we see that the higher resolution runs show longer convergence, i.e., the 300 crossing-time in H, and that all runs can stably
evolve up to the 1000 crossing-time.

IV. OUTLOOK

A. What we have achieved

We reviewed recent efforts to the formulation problem
of numerical relativity, the problem to find a robust sys-
tem against constraint violations. We categorized the
approaches into

(0) The standard ADM formulation (Section IIA),

(1) The BSSN formulation (Section II B),

(2) Hyperbolic formulations (Section IIC), and

(3) Asymptotically constrained formulations (Section
IID).

Most numerical relativity groups now use the BSSN set
of equations, which are obtained empirically. A dramatic
announcement of the success of binary black-hole simu-
lations has caused the community to follow that recipe.
Actually, we do not yet completely understand why the
current set of BSSN equations, together with particular
combinations of gauge conditions, works well. Several
explanations are applied based on the hyperbolic formu-
lation scheme, but as we viewed, they are not yet satis-
factory.

Our approach, on the other hand, tries to construct an
evolution system that has its constraint surface as an at-
tractor. Our unified view is to understand the evolution
system by evaluating its constraint propagation. Espe-
cially, we propose to analyze the constraint amplification
factors that are the eigenvalues of the homogenized con-
straint propagation equations. We analyzed the system

based on our conjecture whether the constraint amplifi-
cation factors suggest a constraint to decay/propagate or
not. We concluded that

• The constraint propagation features become differ-
ent by simply adding constraint terms to the origi-
nal evolution equations (we call this an adjustment
of the evolution equations).

• There is a constraint-violating mode in the stan-
dard ADM evolution system when we apply it to
a single non-rotating black hole space-time, and its
growth rate is larger near the black-hole horizon.

• Such a constraint-violating mode can be killed if
we adjust the evolution equations with a particular
modification using constraint terms. An effective
guideline is to adjust terms as they break the time-
reversal symmetry of the equations.

• Our expectations are borne out in simple numerical
experiments using the Maxwell, the Ashtekar, and
the ADM systems. However, the modifications are
not yet perfect to prevent non-linear growth of the
constraint violation.

• We understand why the BSSN formulation works
better than the ADM one in a limited case (per-
turbation analysis in the flat background); further,
we propose modified evolution equations along the
lines of our previous procedure. Some of these pro-
posed adjusted systems are numerically confirmed
to work better than the standard BSSN system.

The common key to the problem is how to adjust the
evolution equations with constraints. Any adjusted sys-
tems are mathematically equivalent if the constraints are
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completely satisfied, but this is not the case for numeri-
cal simulations. Replacing terms with constraints is one
of the normal steps when people re-formulate equations
in a hyperbolic form.

In summary, let me answer the following three ques-
tions:

• What is the guiding principle for selecting the evo-
lution equations for simulations in GR?
–The key is to analyze the constraint propagation
equation of the system.

• Why do many groups use the BSSN equations?
–Because people just rush, not to be behind others.

• Is there an alternative formulation better than the
BSSN?
–Yes, there is, but we do not know which is the best
one yet.

B. Future directions

If we say the final goal of this project is to find a robust
evolution system against violation of constraints, then
the recipe should be a combination of (a) formulations of
the evolution equations, (b) choice of gauge conditions,
(c) treatment of boundary conditions, and (d) numeri-
cal integration methods. We are now in the stages of
solving these mixed puzzles. Recent attention to higher
dimensional space-time studies is waiting for numerical

research, but it is known that the formulation problem
also exists in higher-dimensional cases [66].

We have written this review from the viewpoint that
general relativity is a constrained dynamical system.
This is not a proper problem in general relativity, but
it is in many physical systems, such as electrodynamics,
magnetohydrodynamics, molecular dynamics, and me-
chanical dynamics. Therefore, sharing and discussing
thoughts between different fields will definitely acceler-
ate the progress. The ideal algorithm to solve all the
problems may not exist, but the author believes that our
final numerical recipe is somewhat an automatic system
and hopes that numerical relativity turns to be an easy
toolkit for everyone in the near future.
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