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In order to obtain an evolution system which is robust against the violation of constraints, we present a

new set of evolution systems based on the so-called Baumgarte-Shapiro-Shibata-Nakamura equations.

The idea is to add functional derivatives of the norm of constraints, C2, to the evolution equations, which

was proposed by Fiske (2004) and was applied to the ADM formulation in our previous study. We derive

the constraint propagation equations, discuss the behavior of constraint damping, and present the results of

numerical tests using the gauge-wave and polarized Gowdy wave spacetimes. The construction of the

C2-adjusted system is straightforward. However, in BSSN, there are two kinetic constraints and three

algebraic constraints; thus, the definition of C2 is a matter of concern. By analyzing constraint propagation

equations, we conclude that C2 should include all the constraints, which is also confirmed numerically. By

tuning the parameters, the lifetime of the simulations can be increased 2–10 times longer than those of the

standard Baumgarte-Shapiro-Shibata-Nakamura evolutions.

DOI: 10.1103/PhysRevD.85.044018 PACS numbers: 04.25.D�

I. INTRODUCTION

When solving the Einstein equations numerically, the
standard way is to split the spacetime into space and time.
The most fundamental decomposition of the Einstein equa-
tions is the Arnowitt-Deser-Misner (ADM) formulation
[1,2]. However, it is well known that in long-term evolu-
tions in strong gravitational fields such as the coalescences
of binary neutron stars and/or black holes, simulations with
the ADM formulation are unstable and are often inter-
rupted before producing physically interesting results.
Finding more robust and stable formulations is known to
the ‘‘formulation problem’’ in numerical relativity [3–5].

Many formulations have been proposed in the last
two decades. The most commonly used sets of evolution
equations among numerical relativists are the so-called
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [6,7], the generalized harmonic (GH) formulation
[8,9], the Kidder-Scheel-Teukolsky (KST) formulation
[10], and the Z4 formulation [11,12] (as references of their
numerical application, we here cite only well-known ar-
ticles; [13,14] for the BSSN formulation, [15] for the GH
formulation, [16] for the KST formulation, and [17] for the
Z4 formulation).

All of the above modern formulations include the tech-
nique of ‘‘constraint damping,’’ which attempts to control
the violations of constraints by adding the constraint terms
to their evolution equations. Using this technique, more

stable and accurate systems are obtained (see e.g. [18,19]).
This technique can be described as ‘‘adjustment’’ of the
original system.
In [20–22], two of the authors systematically investi-

gated how the adjusted terms change the original systems
by calculating the constraint propagation equations. The
authors suggested some effective adjustments for the
BSSN formulation under the name ‘‘adjusted BSSN for-
mulation’’[22]. The actual constraint-damping effect was
confirmed by numerical tests [23].
Fiske proposed a method of adjusting the original evo-

lution system using the norm of the constraints, C2, [24],
which we call a ‘‘C2-adjusted system.’’ The new evolution
equations force the constraints to evolve towards their
decay if the coefficient parameters of the adjusted terms
are set as appropriate positive values. Fiske reported the
damping effect of the constraint violations for the Maxwell
system [24] and for the linearized ADM and BSSN for-
mulations [25]. He also reported the limitation of the
magnitude of the coefficient parameters of the adjusted
terms.
In [26], we applied this C2-adjusted system to the (full)

ADM formulation and presented some numerical tests. We
confirmed that the violations of the constraints are less than
those in the original system. We also reported the differ-
ences of the effective range of the coefficient of the ad-
justed terms.
In this article, we apply the C2-adjusted system to

the (full) BSSN formulation and derive the constraint
propagation equations in the flat space. We perform some*tsuchiya@akane.waseda.jp
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numerical tests and compare them with three other types of
BSSN formulations: the standard BSSN formulation, the
~A-adjusted BSSN formulation, and the C2-adjusted BSSN
formulation. We use the gauge-wave and polarized Gowdy
wave testbeds, which are the test problems as is known
to apples-with-apples testbeds for comparing evolution
systems [27]. Since the models are precisely fixed up to
the gauge conditions, boundary conditions, and techni-
cal parameters, the testbeds are widely used for com-
parisons [23,28,29].

The structure of this article is as follows. We review the
ideas of adjusted systems and the C2-adjusted system in
Sec. II. In Sec. III, we review the standard and adjusted
BSSN formulations and derive the C2-adjusted version of
the BSSN formulation. In Sec. IV, we present some nu-
merical tests of the gauge-wave and polarized Gowdy wave
testbeds. We show the damping effect of the constraint
violations, and confirm that inclusion of algebraic con-
straints in C2 makes the violations of constraints decrease.
We summarize this article in Sec. V. In this article, we only
consider vacuum spacetime, but the inclusion of matter is
straightforward.

II. IDEAS OFADJUSTED SYSTEMS AND
C2-ADJUSTED SYSTEMS

A. Idea of adjusted systems

Suppose we have dynamical variables ui that evolve
with the evolution equations

@tu
i ¼ fðui; @jui; � � �Þ; (2.1)

and suppose also that the system has the (first class) con-
straint equations

Caðui; @jui; � � �Þ � 0: (2.2)

We can then predict how the constraints are preserved by
evaluating the constraint propagation equations

@tC
a ¼ gðCa; @iC

a; � � �Þ; (2.3)

which measure the violation behavior of constraints Ca

in time evolution. Equation (2.3) is theoretically weakly
zero, i.e., @tC

a � 0, since the system is supposed to be
the first class. However, free numerical evolution with
discretized grids introduces a constraint violation, at
least at the level of truncation error, which sometimes
grows and stops the simulations. The unstable feature of
ADM evolution can be understood on the basis of this
analysis [15].

Such features of the constraint propagation equations,
(2.3), change when we modify the original evolution equa-
tions. Suppose we add constraint terms to the right-hand
side of (2.1) as

@tu
i ¼ fðui; @jui; � � �Þ þ FðCa; @jC

a; � � �Þ; (2.4)

where FðCa; � � �Þ � 0 in principle zero but not exactly zero
in numerical evolutions. With this adjustment, Eq. (2.3)
will also be modified to

@tC
a ¼ gðCa; @iC

a; � � �Þ þGðCa; @iC
a; � � �Þ: (2.5)

Therefore, we are able to control @tC
a by making an

appropriate adjustment FðCa; @jC
a; � � �Þ in (2.4). If

@tC
a < 0 is realized, then the system has the constraint

surface as an attractor.
This technique is also known as a constraint-damping

technique. Almost all the current popular formulations
used in large-scale numerical simulations include this
implementation. The purpose of this article is to find a
better way of adjusting the evolution equations to realize
@tC

a � 0.

B. Idea of C2-adjusted systems

Fiske [24] proposed a way of adjusting the evolution
equations which we call ‘‘C2-adjusted systems’’;

@tu
i ¼ fðui; @jui; � � �Þ � �ij

�
�C2

�uj

�
; (2.6)

where �ij is a positive-definite constant coefficient and C2

is the norm of the constraints, which is defined as C2 �R
CaC

ad3x. The term ð�C2=�ujÞ is the functional deriva-

tive of C2 with respect to uj. The associated constraint
propagation equation becomes

@tC
2 ¼ hðCa; @iC

a; � � �Þ �
Z

d3x

�
�C2

�ui

�
�ij

�
�C2

�uj

�
: (2.7)

The motivation for this adjustment is to naturally obtain
the constraint-damping system, @tC

2 < 0. If we set �ij so
that the second term of the right-hand side of (2.7) becomes
larger than the first term, then @tC

2 becomes negative,
which indicates that constraint violations are expected to
decay to zero. Fiske presented numerical examples of the
Maxwell system and the linearized ADM and BSSN for-
mulations, and concluded that this method actually reduces
constraint violations as expected. In our previous work
[26], we applied the C2-adjusted system to the (full)
ADM formulation and derived the constraint propagation
equations. We confirmed that @tC

2 < 0 is expected in the
flat spacetime. We performed numerical tests with the
C2-adjusted ADM formulation using the Gowdy wave
testbed, and confirmed that the violations of the constraint
are lower than those of the standard ADM formulation.
The simulation continues 1.7 times longer than that of the
standard ADM formulation with the magnitude of the
violations of the constraint less than order Oð100Þ.

III. APPLICATION TO BSSN FORMULATION

A. Standard BSSN formulation

We work with the widely used notation of the BSSN

system. That is, the dynamical variables ð’;K; ~�ij; ~Aij; ~�
iÞ
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as the replacement of the variables of the ADM formula-
tion, ð�ij; KijÞ, where

’ � ð1=12Þ logðdetð�ijÞÞ; (3.1)

K � �ijKij; (3.2)

~� ij � e�4’�ij; (3.3)

~A ij � e�4’ðKij � ð1=3Þ�ijKÞ; and (3.4)

~� i � ~�mn~�i
mn: (3.5)

The BSSN evolution equations are, then,

@t’ ¼ �ð1=6Þ�K þ ð1=6Þð@i�iÞ þ �ið@i’Þ; (3.6)

@tK ¼ � ~Aij
~Aij þ ð1=3Þ�K2 �DiD

i�þ �ið@iKÞ; (3.7)

@t ~�ij ¼ �2� ~Aij � ð2=3Þ~�ijð@‘�‘Þ þ ~�j‘ð@i�‘Þ
þ ~�i‘ð@j�‘Þ þ �‘ð@‘ ~�ijÞ; (3.8)

@t ~Aij ¼ �K ~Aij � 2� ~Ai‘
~A‘

j þ �e�4’Rij
TF

� e�4’ðDiDj�ÞTF � ð2=3Þ ~Aijð@‘�‘Þ
þ ð@i�‘Þ ~Aj‘ þ ð@j�‘Þ ~Ai‘ þ �‘ð@‘ ~AijÞ; (3.9)

@t~�
i ¼ 2�f6ð@j’Þ ~Aij þ ~�i

j‘
~Aj‘ � ð2=3Þ~�ijð@jKÞg

� 2ð@j�Þ ~Aij þ ð2=3Þ~�ið@j�jÞ þ ð1=3Þ~�ijð@‘@j�‘Þ
þ �‘ð@‘~�iÞ � ~�jð@j�iÞ þ ~�j‘ð@j@‘�iÞ; (3.10)

where TF denotes the trace-free part. The Ricci tensor in
the BSSN system is normally calculated as

Rij � ~Rij þ R’
ij; (3.11)

where

~Rij � ~�nði@jÞ~�n þ ~�‘mð2~�k
‘ði~�jÞkm þ ~�n‘j

~�n
imÞ

� ð1=2Þ~�m‘ ~�ij;m‘ þ ~�n~�ðijÞn; (3.12)

R’
ij � �2 ~Di

~Dj’þ 4ð ~Di’Þð ~Dj’Þ � 2~�ij
~Dm

~Dm’

� 4~�ijð ~Dm’Þð ~Dm’Þ: (3.13)

The BSSN system has five constraint equations. The
‘‘kinematic’’ constraint equations, which are the
Hamiltonian constraint equation and the momentum con-
straint equations (H -constraint and M-constraint, here-
after), are expressed in terms of the BSSN basic variables
as

H � e�4’ ~R� 8e�4’ð ~Di
~Di’þ ð ~Dm’Þð ~Dm’ÞÞ

þ ð2=3ÞK2 � ~Aij
~Aij � ð2=3ÞAK � 0; (3.14)

Mi ��ð2=3Þ ~DiKþ 6ð ~Dj’Þ ~Aj
iþ ~Dj

~Aj
i� 2ð ~Di’ÞA� 0;

(3.15)

respectively, where ~Di is the covariant derivative associ-
ated with ~�ij and ~R ¼ ~�ij ~Rij. Because of the introduction

of new variables, there are additional ‘‘algebraic’’ con-
straint equations:

G i � ~�i � ~�j‘~�i
j‘ � 0; (3.16)

A � ~Aij ~�ij � 0; (3.17)

S � detð~�ijÞ � 1 � 0; (3.18)

which we call the G, A-, and S-constraints, respectively,
hereafter. If the algebraic constraint equations, (3.16),
(3.17), and (3.18), are not satisfied, the BSSN formulation
and ADM formulation are not equivalent mathematically.

B. C2-adjusted BSSN formulation

The C2-adjusted BSSN evolution equations are formally
written as

@t’ ¼ ð3:6Þ � �’

�
�C2

�’

�
; (3.19)

@tK ¼ ð3:7Þ � �K

�
�C2

�K

�
; (3.20)

@t ~�ij ¼ ð3:21Þ � �~�ijmn

�
�C2

�~�mn

�
; (3.21)

@t ~Aij ¼ ð3:9Þ � � ~Aijmn

�
�C2

� ~Amn

�
; (3.22)

@t~�
i ¼ ð3:10Þ � �ij

~�

�
�C2

�~�j

�
; (3.23)

where all the coefficients �’, �K, �~�ijmn, � ~Aijmn, and �ij
~�

are positive definite. C2 is a function of the constraintsH ,
Mi, Gi, A, and S, which we set as

C2 ¼
Z
ðH 2 þ �ijMiMj þ cG�ijGiGj

þ cAA2 þ cSS2Þd3x; (3.24)

where, cG, cA, and cS are Boolean parameters (0 or 1).
These three parameters are introduced to prove the neces-
sity of the algebraic constraint terms in (3.24).
The adjusted terms in (3.19), (3.20), (3.21), and (3.22)

are then written down explicitly, as shown in Appendix A.
The constraint propagation equations of this system are
also derived for the Minkowskii background, as shown in
Appendix B.
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Now we discuss the effect of the algebraic constraints.
From (B1)–(B5), we see that the constraints affect each
others. The constraint propagation equations of the alge-
braic constraints, (B3)–(B5), include cGð�~���

a
b �

2�~��
a
bÞGb, �6cA� ~AA, and �6cS�~�S, respectively.

These terms contribute to reduce the violations of each
constraint if cG, cA, and cS are nonzero. Therefore, we
adopt cG ¼ cA ¼ cS ¼ 1 in (3.24);

C2 ¼
Z
ðH 2 þ �ijMiMj þ �ijGiGj þA2 þ S2Þd3x:

(3.25)

This discussion is considered only from the viewpoint of
the inclusion of the diffusion terms. In order to validate this
decision, we perform some numerical examples in Sec. IV.

C. ~A-adjusted BSSN system

In [22], two of the authors reported some examples of
adjusted systems for the BSSN formulation. The authors
investigated the signatures of eigenvalues of the coefficient
matrix of the constraint propagation equations, and con-
cluded three of the examples to be the best candidates for
the adjustment. The actual numerical tests were performed
later [23] using the gauge-wave, linear-wave, and polarized
Gowdy-wave testbeds. The most robust system among the

three examples for these three testbeds was the ~A-adjusted
BSSN formulation, which replaces (3.9) in the standard
BSSN system with

@t ~Aij ¼ ð3:9Þ þ �A� ~DðiMjÞ; (3.26)

where �A is a constant. If �A is set as positive, the viola-
tions of the constraints are expected to be damped in flat

spacetime [22]. We also use the ~A-adjusted BSSN system
for comparison in the following numerical tests.

IV. NUMERICAL EXAMPLES

We test the three systems (C2-adjusted BSSN,
~A-adjusted BSSN, and standard BSSN) in numerical evo-
lutions using the gauge-wave and polarized Gowdy-wave

spacetimes, which are the standard tests for comparisons of
formulations in numerical relativity, and are known as
apples-with-apples testbeds [27]. We also performed the
linear-wave testbed but the violations of the constraint are
negligible; thus, we employ only the above two testbeds in
this article. These tests have been used by several groups
and were reported in the same manner (e.g., [23,28–30]).
For simplicity, we set the coefficient parameters

in (3.21), (3.21), and (3.22) to �~�ijmn ¼ �~��im�jn,

� ~Aijmn ¼ � ~A�im�jn, and �ij
~�
¼ �~��

ij with non-negative

coefficient constant parameters �~�, � ~A, and �~�. Our code

passes the convergence test with second-order accuracy.
We list the figures in this article in Table I for reader’s
convenience.

A. Gauge-wave testbed

1. Metric and parameters

The metric of the gauge-wave test is

ds2 ¼ �Hdt2 þHdx2 þ dy2 þ dz2; (4.1)

where

H ¼ 1� A sinð2�ðx� tÞ=dÞ; (4.2)

which describes a sinusoidal gauge wave of amplitude A
propagating along the x-axis. The nontrivial extrinsic cur-
vature is

Kxx ¼ ��A

d

cosð2�ðx�tÞ
d Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� A sin2�ðx�tÞ
d

q : (4.3)

Following [27], we chose the numerical domain and pa-
rameters as follows:
(i) Gauge-wave parameters: d ¼ 1 and A ¼ 10�2.
(ii) Simulation domain: x 2 ½�0:5; 0:5�, y ¼ z ¼ 0.
(iii) Grid: xn ¼ �0:5þ ðn� 1=2Þdx with n ¼

1; � � � ; 100, where dx ¼ 1=100.
(iv) Time step: dt ¼ 0:25dx.
(v) Boundary conditions: Periodic boundary condition

in x-direction and planar symmetry in y-and
z-directions.

TABLE I. List of figures.

Gauge-wave test Gowdy-wave test

Section IVA Section IVB

(A) Standard BSSN (3.6), (3.7), (3.8), (3.9), and (3.10) Figure 1 norm each Figure 6 norm each

(Constraint propagation, see App. C) Figure 2 norm all Figure 7 norm all

(B) ~A-adjusted BSSN Figure 2 norm all Figure 7 norm all

(3.6), (3.7), and (3.8), and (3.26) Figure 3 norm each

(Constraint propagation, see App. B)

(C) C2-adjusted BSSN (3.19), (3.20), (3.21), (3.22), and (3.23) Figure 2 norm all Figure 7 norm all

(Constraint propagation, see App. B) Figure 3 norm each Figure 8 norm each

Figure 4 adjusted ratio Figure 9 adjusted ratio

Figure 5 (3.25) test Figure 10 (3.25) test
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(vi) Gauge conditions:

@t� ¼ ��2K; �i ¼ 0: (4.4)

(vii) Scheme: second-order iterative Crank-Nicolson.

2. Constraint violations and their dampings

Figure 1 shows the violations of five constraint equations
H ,Mi,Gi,A, and S for the gauge-wave evolution using
the standard BSSN formulation. The violation of the
M-constraint, line (A-2), is the largest during the evolu-
tion, while the violations of both the A-constraint and
S-constraint are negligible. This is the starting point for
improving the BSSN formulation.

Applying the adjustment procedure, the lifetime of the
standard BSSN evolution is increased at least 10-fold. In
Fig. 2, we plot the L2 norm of the constraints, (3.25), of
three BSSN evolutions: (A) the standard BSSN formula-

tion (3.6), (3.7), (3.8), (3.9), and (3.10), (B) the ~A-adjusted
BSSN formulation (3.6), (3.7), (3.8), (3.10), and (3.26),
and (C) the C2-adjusted BSSN formulation (3.19), (3.20),
(3.21), (3.22), and (3.23). For the standard BSSN case, we
see the violation of constraint monotonically increases in
the earlier stage, while the other two adjusted cases keep it
smaller. We can say that the C2-adjusted formulation is the
most robust one against the violation of constraints be-
tween three.

We plot the norm of each constraint equation in Fig. 3.
First, we see that the violation of the M-constraint for the
two adjusted BSSN formulations [the lines (B-2) and (C-2)
in Fig. 3] are less than that of the standard BSSN formu-
lation in Fig. 1. This behavior would be explained from the
constraint propagation equations, where we see the terms
� ~A�Ma and ð1=2Þ�A�Mi in (B2) and (B7), respectively.
These terms contribute to reduce the violations of the

M-constraint. This is the main consequence of the two
adjusted BSSN formulations.
Second, we also find that the violations of the

A-constraint and S-constraint are larger than those in
Fig. 1. From constraint propagation equations (B4) and
(C4), the violation of the A-constraint is triggered by the
M- and A-constraints. The increase in the violations of
the A-constraint is caused by the term 2� ~A�

ijð@iMjÞ.
Similarly, in (B5) and (C5), the violation of the
S-constraint is triggered by only the A-constraint since
the magnitude of �~� is negligible. Therefore, the increase

in the violation of the S-constraint is due to the violation of
the A-constraint.
From (A1) and (A3), it can be seen that the adjusted

terms of the evolution equations of ’ and ~�ij include

second-order derivative terms of the H -constraint. This
means that these evolution equations include fourth-order
derivative terms of the dynamical variables. In order to
investigate the magnitudes of the adjusted terms, we show
in Fig. 4 the ratio of the adjusted terms to that of the
original terms in each evolution equation. We see that the
magnitudes of the adjusted terms of ’ and ~�ij are reason-

ably small.
In the simulations with the C2-adjusted BSSN formula-

tion, the largest violation is the S-constraint. The
S-constraint depends only on the dynamical variables
~�ij, so that there is no other choice than setting �~� for

controlling the S-constraint, as can be seen from (B5).
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FIG. 1 (color online). L2 norm of each constraint violation in
the gauge-wave evolution using the standard BSSN formulation.
The vertical axis is the logarithm of the L2 norm of the
constraints and the horizontal axis is time. We see the evolution
stops at t ¼ 110 due to the growth of M-constraint violation.
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FIG. 2 (color online). L2 norm of all the constraints in gauge-
wave evolution comparing three BSSN formulations:
(A) standard BSSN formulation (solid line), (B) ~A-adjusted
BSSN formulation (dotted line), and (C) C2-adjusted BSSN
formulation (dot-dashed line). The adopted parameters are �A ¼
10�1:6 for (B), and �’ ¼ 10�8:5, �K ¼ 10�8:4, �~� ¼ 10�7:3,

� ~A ¼ 10�2:5, and �~� ¼ 10�1:8 for (C) to minimize C2 at t ¼
1000. The constraint violations of the ~A-adjusted BSSN formu-
lation, (B), increase with time and the simulation stops before
t ¼ 1300, while those of the C2-adjusted BSSN formulation,
(C), remain at Oð10�1Þ until t ¼ 1300 and the simulation stops
at t ¼ 1350.

CONSTRAINT . . . II ANOTHER RECIPE . . . PHYSICAL REVIEW D 85, 044018 (2012)

044018-5



However, we must set �~� to a value as small as possible

since the adjusted term of ~�ij includes higher derivatives of

~�ij. Therefore, it is hard to control the S-constraint, and we
have not yet found an appropriate set of parameters. This
will remain a future problem of this C2-adjusted BSSN
system.

We also investigated the sensitivity of the parameters
in the C2-adjusted BSSN evolutions. We compared
evolutions with setting only one of the parameters,
ð�’; �K; �~�; � ~A; �~�Þ, nonzero. Since the key of the damp-

ing of the violation of constraints is theM-constraint, and
ð�K; � ~AÞ controls the violation of theM-constraint directly
by (B2), we mention here only the dependence on �K

and � ~A. We found that the constraint-damping feature

changes sensitively by both �K and � ~A, among them
setting � ~A is important to control the M-constraint
violation. We see the best-controlled evolution with
� ~A ¼ 10�3, than 10�2 and 10�4.

3. Contribution of algebraic constraints
in definition of C2

In Sec. III B, we defined C2, (3.25), including the alge-
braic constraints. We check this validity by turning off the
algebraic constraints in (3.25). The result is shown in
Fig. 5, where we see the simulation stops at t ¼ 800 due
to a sudden increase in the violation of the constraints. This
confirms that the algebraic constraints play an important
role of damping of the violations of constraints. We also
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FIG. 3 (color online). L2 norm of each constraint in the gauge-wave evolution using the ~A-adjusted BSSN formulation [panel (a)]
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FIG. 4 (color online). L2 norm of the ratio (adjusted terms)/
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the gauge-wave test. We see that the largest ratio is the evolution
equation of ~Aij. The corrections to ’, K, and ~�ij evolution

equations are reasonably small.
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tested with other combinations of Boolean parameters
ðcG; cA; cSÞ, and confirmed that the best controlled evolu-
tion is realized when cG ¼ cA ¼ cS ¼ 1.

B. Gowdy-wave testbed

1. Metric and parameters

The metric of the polarized Gowdy wave is given by

ds2 ¼ t�1=2e�=2ð�dt2 þ dx2Þ þ tðePdy2 þ e�Pdz2Þ;
(4.5)

where P and � are functions of x and t. The forward
direction of the time coordinate t corresponds to the ex-
panding universe, and t ¼ 0 corresponds to the cosmologi-
cal singularity.

For simple forms of the solutions, P and � are given by

P ¼ J0ð2�tÞ cosð2�xÞ; (4.6)

�¼�2�tJ0ð2�tÞJ1ð2�tÞcos2ð2�xÞ
þ2�2t2½J20ð2�tÞþJ21ð2�tÞ�
�ð1=2Þfð2�Þ2½J20ð2�ÞþJ21ð2�Þ��2�J0ð2�ÞJ1ð2�Þg;

(4.7)

where Jn is the Bessel function.
Following [27], a new time coordinate �, which satisfies

harmonic slicing, is obtained by the coordinate transfor-
mation

tð�Þ ¼ kec�; (4.8)

where k and c are arbitrary constants. We also follow [27]
by setting k, c, and the initial time t0 as

k� 9:67076981276405; c� 0:002119511921460;

(4.9)

t0 ¼ 9:87532058290982; (4.10)

so that the lapse function in the new time coordinate is
unity and t ¼ � at the initial time.

We also use the following parameters specified in [27].
(i) Simulation domain: x 2 ½�0:5; 0:5�; y ¼ z ¼ 0.
(ii) Grid: xn ¼ �0:5þ ðn� ð1=2ÞÞdx, n ¼ 1; � � � ; 100,

where dx ¼ 1=100.
(iii) Time step: dt ¼ 0:25dx.
(iv) Boundary conditions: Periodic boundary condition

in x-direction and planar symmetry in y- and
z-directions.

(v) Gauge conditions: @t� ¼ ��2K, �i ¼ 0.
(vi) Scheme: second-order iterative Crank-Nicolson.

2. Constraint violations and their dampings

We begin showing the case of the standard BSSN for-
mulation, (3.6), (3.7), (3.8), (3.9), and (3.10). Figure 6
shows the L2 norm of the violations of the constraints as

a function of backward time ð�tÞ. We see that the violation
of the M-constraint is the largest at all times and that all
the violations of constraints increase monotonically with
time. [Comparing with the result in [23], our code shows
that the H -constraint (A-1) remains at the same level but
the M-constraint (A-2) is smaller.]
Similar to the gauge-wave test, we compare the viola-

tions of C2 for three types of BSSNs in Fig. 7. In the case of

the ~A-adjusted BSSN formulation, the violation of the
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FIG. 6 (color online). L2 norm of each constraint equation in
the polarized Gowdy-wave evolution using the standard BSSN
formulation. The vertical axis is the logarithm of the L2 norm of
the constraint and the horizontal axis is backward time.
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solid line (A) is the standard BSSN formulation, the dotted line
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the dot-dashed line (C) is the C2-adjusted BSSN formulation
with �’ ¼ �10�10, �K ¼ �10�4:6, �~� ¼ �10�11, � ~A ¼
�10�1:2, and �~� ¼ �10�14:3. Note that the signatures of �A

and �s are negative since the simulations evolve backward. We
see that lines (A) and (C) are identical until t ¼ �200. Line (C)
then decreases and maintains its magnitude under Oð10�2Þ after
t ¼ �400. We confirm this behavior until t ¼ �1500.
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constraints increases if we set j�Aj larger than 10�0:2. In the
case of the C2-adjusted BSSN formulation, it increases if
we set j� ~Aj larger than 10�1:2. Note that the signatures of
the above �A and �s are negative, contrary to the predic-
tions in [22] and Sec. III, respectively. This is because these
simulations are performed with backward time.

As shown in Fig. 7, the violations of C2 for the standard

BSSN formulation and the ~A-adjusted BSSN formulation
increase monotonically with time, while that for the
C2-adjusted BSSN formulation decreases after t ¼ �200.
To investigate the reason of this rapid decay after t ¼
�200, we plot each constraint violation in Fig. 8. We see
that the violations of the A-constraint and S-constraint
increase with negative time, in contrast to the standard
BSSN formulation, and those of the M-constraint and
G-constraint decrease after t ¼ �200. The propagation
equation of the M-constraint, (B2), includes the term
�2cA� ~A@aA, which contributes to constraint damping.
Similarly, the propagation equation of the G-constraint,
(B3), includes �abfð1=2Þ�~�@b�þ 2�~�@bgH �
cS�~��

ab@bS; the decay of the violations of the

G-constraint is caused by these terms. Therefore, these
terms are considered to become significant of approxi-
mately t ¼ �200 when the violations of the A, H , and
S-constraints become a certain order of magnitude.

In contrast to the gauge-wave testbed (Fig. 4), we pre-
pared Fig. 9, which shows the magnitudes of the ratio of the
adjusted terms to the original terms. Since the magnitudes
of the adjusted terms of ’ and ~�ij can be disregarded, the

effect of the reduction of the adjusted terms of ’ and ~�ij is

negligible. Therefore, the C2-adjusted BSSN evolution in
the Gowdy wave can be regarded as maintaining its origi-
nal hyperbolicity.

We repeated the parameter-dependency survey of
ð�’; �K; �~�; � ~A; �~�Þ for this spacetime evolution. Similar

to Sec. IVA2, we found that the constraint-damping fea-
ture changes sensitively by both �K and �eA, among them

setting �eA is important to control the M-constraint viola-

tion. We see the best-controlled evolution with �eA ¼ 10�1,

than 100 and 10�2

3. Contribution of algebraic constraints
in definition of C2

In Sec. III B,we investigated the effect of the definition of
C2. Similar to the gauge-wave tests in the previous subsec-
tion, we show the effect of constraint damping caused
by the algebraic constraints. In Fig. 10, we plot the viola-
tions of all the constraints with cG ¼ cA ¼ cS ¼ 0. We see
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that all the violations of the constraints are larger than those
in Fig. 8. This result is consistent with the discussion in
Sec. III B.

V. SUMMARYAND DISCUSSION

To obtain an evolution system robust against the viola-
tion of constraints, we derived a new set of adjusted BSSN
equations applying the idea proposed by Fiske [24] which
we call a ‘‘C2-adjusted system.’’ That is, we added the
functional derivatives of the norm of the constraints, C2, to
the evolution equations (3.19), (3.20), (3.21), (3.22), and
(3.23). We performed numerical tests in the gauge-wave
and Gowdy-wave spacetimes and confirmed that the vio-
lations of constraints decrease as expected, and that longer
and accurate simulation than that of the standard BSSN
evolution is available.

The construction of the C2-adjusted system is straight-
forward. However, in BSSN, there are two kinetic con-
straints and three additional algebraic constraints
compared to the ADM system; thus, the definition of C2

is a matter of concern. By analyzing constraint propagation
equations, we concluded that C2 should include all the
constraints. This was also confirmed by numerical tests.
The importance of such algebraic constraints suggests
similar treatment when we apply this idea to other formu-
lations of the Einstein equation.

To evaluate the reduction of the violations of the con-

straints, we also compared evolutions with the ~A-adjusted
BSSN formulation proposed in [22]. We concluded that the
C2-adjusted BSSN formulation exhibits superior constraint

damping to both the standard and ~A-adjusted BSSN for-
mulations. In particular, the lifetimes of the simulations of
the C2-adjusted BSSN formulation in the gauge-wave and
Gowdy-wave testbeds are ten-times and twice longer than
those of the standard BSSN formulation, respectively.

So far, many trials have been reported to improve
BSSN formulation (e.g. [22,31]). Recently, for example,
a conformal-traceless Z4 formulation was proposed with
its test demonstrations [17]. Among them, Fig. 1 of [17]
can be compared with our Fig. 3 [(B-1) and (C-1)] as the
same gauge-wave test. The violation of H -constraint in
C2-adjusted evolution looks smaller than that of new Z4
evolution, but regarding the blow-up time of simulations,
the new Z4 system has advantage.

Fiske reported the applications of the idea of
C2-adjustment to ‘‘linearized’’ ADM and BSSN formula-
tions in his dissertation [25]. (As he mentioned, his BSSN
is not derived from the standard BSSN equations but from
a linearized ADM using a new variable, �. His set of BSSN
equations also does not include the A- and S-constraints
in our notation.). He observed damping of the constraint
violation of 5 orders of magnitude and the equivalent
solution errors in his numerical evolution tests. Our studies
show that the full BSSN set of equations with fully ad-
justed terms also produces the desired constraint-damping

results (Fig. 2 and Fig. 7), although apparent improvements
are at fewer orders of magnitude.
When this idea is applied to the ADM system [26], we

found that the adjustment to the Kij-evolution equation is

essential. In the present study, we found that the adjustment

to the ~Aij-evolution equation is essential for controlling the

constraints. In both cases, the associated adjustment pa-
rameters (Lagrangian multipliers), � ~A in this study, are
sensitive and require fine-tuning. In the future, an auto-
matic controlling system that monitors the order of con-
straint violations and maintains them by tuning the
parameters automatically would be helpful. Applications
of control theory in this direction are being investigated.
The correction terms of the C2-adjusted system include

higher-order derivatives and are not quasilinear; thus, little
is known mathematically about such systems. These addi-
tional terms might effectively act as artificial viscosity
terms in fluid simulations, but might also enhance the
violation of errors. To investigate this direction further,
the next step is to apply the idea to a system in which
constraints do not include second-order derivatives of dy-
namical variables. We are working on the Kidder-Scheel-
Teukolsky formulation [10] as an example of such a
system, which we will report in the near future.
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APPENDIX A: ADDITIONAL
C2-ADJUSTED TERMS

The adjusted terms �C2=�’, �C2=�K, �C2=�~�mn,

�C2=� ~Amn, and �C2=�~�a in (3.19), (3.20), (3.21), (3.22),
and (3.23) are written as follows:

�C2

�’
¼2 ~H1H �2ð@a ~Ha

2ÞH �2 ~Ha
2@aH þ2ð@a@b ~Hab

3 ÞH
þ2ð@a ~Hab

3 Þ@bH þ2ð@b ~Hab
3 Þ@aH þ2 ~Hab

3 @a@bH

�2ð@a ~M1i
aÞe�4’ ~�ijMjþ8 ~M1i

ae�4’ð@a’Þ~�ijMj

�2 ~M1i
ae�4’ð@a ~�ijÞMj�2 ~M1i

ae�4’ ~�ij@aMj

�4~�ije�4’MiMjþ4cGe
4’ ~�ijGiGj; (A1)

�C2

�K
¼ 2 ~H4H � 2ð@‘ ~M2i

‘Þe�4’ ~�ijMj

þ 8 ~M2i
‘e�4’ð@‘’Þ~�ijMj

� 2 ~M2i
‘e�4’ð@‘ ~�ijÞMj � 2 ~M2i

‘e�4’ ~�ij@‘Mj;

(A2)
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�C2

�~�mn

¼ 2 ~Hmn
5 H � 2ð@i ~Himn

6 ÞH � 2 ~Himn
6 @iH þ 2ð@i@j ~Hijmn

7 ÞH þ 2ð@i ~Hijmn
7 Þ@jH þ 2ð@j ~Hijmn

7 Þ@iH

þ 2 ~Hijmn
7 @i@jH þ 2 ~M3i

mne�4’ ~�ijMj � 2ð@c ~M4i
cmnÞe�4’ ~�ijMj þ 8 ~M4i

cmne�4’ð@c’Þ~�ijMj

� 2 ~M4i
cmne�4’ð@c ~�ijÞMj � 2 ~M4i

cmne�4’ ~�ij@cMj � e�4’ ~�im ~�jnMiMj þ 2cGG
imn
1 e4’ ~�ijGj

� 2cGð@‘Gimn‘
2 Þe4’ ~�ijGj � 8cGG

imn‘
2 e4’ð@‘’Þ~�ijGj � 2cGG

imn‘
2 e4’ð@‘ ~�ijÞGj � 2cGG

imn‘
2 e4’ ~�ij@‘Gj

þ cGe
4’GmGn þ 2cAA

mn
1 Aþ 2cSS

mn
1 S; (A3)

�C2

� ~Amn

¼ 2 ~Hmn
8 H þ 2e�4’ ~�ij ~M5i

mnMj � 2ð@c ~M6i
cmnÞe�4’ ~�ijMj þ 8 ~M6i

cmne�4’ð@c’Þ~�ijMj

� 2 ~M6i
cmne�4’ð@c ~�ijÞMj � 2 ~M6i

cmne�4’ ~�ij@cMj þ 2cAA
mn
2 A; (A4)

�C2

�~�a
¼ 2 ~H9aH � 2ð@b ~Hb

10aÞH � 2 ~Hb
10a@bH

þ 2cGG
i
3ae

4’ ~�ijGj; (A5)

where

~H 1 ¼ �4e�4’ ~Rþ 32e�4’f ~Di ~Di’þ ð ~Di’Þð ~Di’Þg;
(A6)

~H a
2 ¼ 8e�4’ð~�ij~�a

ij � 2 ~Da’Þ; (A7)

~H ab
3 ¼ �8e�4’ ~�ab; (A8)

~H 4 ¼ ð4=3ÞK � ð2=3Þ~�ij ~Aij; (A9)

~Hmn
5 ¼ �e�4’ ~Rmn þ e�4’ð@j~�ðmÞ~�nÞj � 2e�4’~�km

j
~�jn

k

� 2e�4’~�i‘ðm~�nÞ
‘i � e�4’~�ami~�ai

n

� e�4’~�mi‘~�n
‘i þ ð1=2Þe�4’ ~�ij;a‘ ~�

ij ~�am ~�‘n

þ 8e�4’ ~Dm ~Dn’� 8e�4’ð ~Dðm’Þ~�nÞ
ij ~�

ij

þ 8e�4’ð ~Dm’Þð ~Dn’Þ þ 2 ~Amb ~An
b þ ð2=3Þ ~AmnK;

(A10)

~H‘mn
6 ¼ e�4’f~�‘mn þ 2~�ðnmÞ‘ þ ð1=2Þ�‘ ~�mn

þ 8~�‘ðmð ~DnÞ’Þ � 4~�mn ~D‘’g; (A11)

~H ijmn
7 ¼ �ð1=2Þe�4’ ~�mn ~�ij; (A12)

~Hmn
8 ¼ �2 ~Amn � ð2=3Þ~�mnK; (A13)

~H 9a ¼ ð1=2Þe�4’ ~�ij ~�ij;a; (A14)

~H b
10a ¼ e�4’�b

a; (A15)

~M 1i
a ¼ 6 ~Aa

i � 2 ~Amn ~�
mn�a

i; (A16)

~M 2i
j ¼ �ð2=3Þ�j

i; (A17)

~M3i
mn ¼ �6ð ~Dðm’Þ ~AnÞ

i þ 2ð ~Di’Þ ~Amn � ~Dðm ~AnÞ
i

þ ~Aaðn~�mÞ
ai þ ~Aðm

i
~�nÞ

j‘ ~�
j‘; (A18)

~M 4i
cmn ¼ �~�cðn ~AmÞ

i þ ð1=2Þ~�mn ~Ac
i � ð1=2Þ ~Anm�c

i;

(A19)

~M5i
mn ¼ 6ð ~Dðm’Þ�nÞ

i � 2ð ~Di’Þ~�mn

� �i
ðm~�nÞ

j‘ ~�
j‘ þ ð1=2Þ~�mn

;i; (A20)

~M 6i
cmn ¼ ~�cðm�nÞ

i; (A21)

Giab
1 ¼ ~�iab þ ~�iðb~�aÞ

mn ~�
mn; (A22)

Giab‘
2 ¼ �~�‘ðb ~�aÞi þ ð1=2Þ~�ab ~�i‘; (A23)

Gi
3j ¼ �i

j; (A24)

Aab
1 ¼ � ~Aab; (A25)

Aab
2 ¼ ~�ab; (A26)

Sab1 ¼ ð1=2Þ"ajk"bn‘ ~�jn ~�k‘: (A27)

APPENDIX B: CONSTRAINT PROPAGATION
EQUATIONS OFADJUSTED

BSSN FORMULATIONS

Here we give the constraint propagation equations for

the C2-adjusted BSSN formulation and the ~A-adjusted
BSSN formulation in Minkowski spacetime. For simplic-
ity, we set �~�ijmn ¼ �~��im�jn, � ~Aijmn ¼ � ~A�im�jn, and

�ij
~�
¼ �~��

ij. The constraint propagation equations of the

C2-adjusted BSSN formulation are
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@tH ¼ ½Original Terms� þ ð�128�’�
2 � ð3=2Þ�~��

2

þ 2�~��ÞH þ cGð�ð1=2Þ�~��@m � 2�~�@mÞGm

þ 3cS�~��S; (B1)

@tMa ¼ ½Original Terms� þ fð8=9Þ�K�
bc@a@b

þ � ~A��a
c þ � ~A�

bc@a@bgMc � 2cA� ~A@aA;

(B2)

@tGa ¼ ½Original Terms� þ �abðð1=2Þ�~�@b�

þ 2�~�@bÞH þ cGð�~���
a
b þ ð1=2Þ�~��

ac@c@b

� 2�~��
a
bÞGb � cS�~��

ab@bS; (B3)

@tA ¼ ½Original Terms� þ 2� ~A�
ijð@iMjÞ � 6cA� ~AA;

(B4)

@tS ¼ ½Original Terms� þ 3�~��H þ cG�~�@‘G‘

� 6cS�~�S; (B5)

and those of the ~A-adjusted BSSN formulation are

@tH ¼ ½Original Terms�; (B6)

@tMi ¼ ½Original Terms� þ ð1=2Þ�A�Mi; (B7)

@tGi ¼ ½Original Terms�; (B8)

@tA ¼ ½Original Terms� þ �A�
ij@iMj; (B9)

@tS ¼ ½Original Terms�; (B10)

where � is the Laplacian operator in flat space. ‘‘Original
Terms’’ refers to the right-hand side of the constraint
propagation equations for the standard BSSN formulation.
Full expressions for the terms are given in the appendix
of [22].

APPENDIX C: CONSTRAINT PROPAGATION
EQUATIONS OF STANDARD BSSN

FORMULATION WITH �i ¼ 0

The constraint propagation equations for the standard
BSSN formulation with �i ¼ 0 are as follows (the full
expressions are available in the appendix of [22]).

@tH ¼ ½ð2=3Þ�K þ ð2=3Þ�A�H þ ½�4e�4’�ð�k’Þ~�kj � 2e�4’ð@k�Þ~�jk�Mj

þ ½�2�e�4’ ~Ak
j@k � �e�4’ð@j ~Ak‘Þ~�k‘ � e�4’ð@j�ÞA�Gj þ ½2�e�4’ ~��1 ~�‘kð@‘’ÞA@k

þ ð1=2Þ�e�4’ ~��1ð@‘AÞ~�‘k@k þ ð1=2Þe�4’ ~��1ð@‘�Þ~�‘kA@k�S þ ½ð4=9Þ�KA� ð8=9Þ�K2

þ ð4=3Þ�e�4’ð@i@j’Þ~�ij þ ð8=3Þ�e�4’ð@k’Þð@‘ ~�‘kÞ þ �e�4’ð@j ~�jkÞ@k þ 8�e�4’ ~�jkð@j’Þ@k
þ �e�4’ ~�jk@j@k þ 8e�4’ð@‘�Þð@k’Þ~�‘k þ e�4’ð@‘�Þð@k ~�‘kÞ þ 2e�4’ð@‘�Þ~�‘k@k þ e�4’ ~�‘kð@‘@k�Þ�A;

(C1)

@tMi ¼ ½�ð1=3Þð@i�Þ þ ð1=6Þ@i�H þ �KMi þ ½�e�4’ ~�kmð@k’Þð@j ~�miÞ � ð1=2Þ�e�4’~�m
k‘ ~�

k‘ð@j ~�miÞ
þ ð1=2Þ�e�4’ ~�mkð@k@j ~�miÞ þ ð1=2Þ�e�4’ ~��2ð@iSÞð@jSÞ � ð1=4Þ�e�4’ð@i ~�k‘Þð@j ~�k‘Þ
þ �e�4’ ~�kmð@k’Þ~�ji@m þ �e�4’ð@j’Þ@i � ð1=2Þ�e�4’~�m

k‘ ~�
k‘ ~�ji@m þ �e�4’ ~�mk~�ijk@m

þ ð1=2Þ�e�4’ ~�‘k ~�ji@k@‘ þ ð1=2Þe�4’ ~�mkð@j ~�imÞð@k�Þ þ ð1=2Þe�4’ð@j�Þ@i þ ð1=2Þe�4’ ~�mk ~�jið@k�Þ@m�Gj

þ ½� ~Ak
ið@k�Þ þ ð1=9Þð�jÞK þ ð4=9Þ�ð@iKÞ þ ð1=9Þ�K@i � � ~Ak

i@k�A; (C2)

@tGi ¼ 2�~�ijMj þ ½4�~�ijð ~Dj’Þ � �~�ij@j � ð@k�Þ~�ik�A; (C3)

@tA ¼ �KA; (C4)

@tS ¼ �2�~�A: (C5)
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