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We derive the simplest traversable wormhole solutions in n-dimensional general relativity, assuming

static and spherically symmetric space-time with a ghost scalar field. This is the generalization of the

Ellis solution (or the so-called Morris-Thorne’s traversable wormhole) into a higher dimension. We also

study their stability using linear perturbation analysis. We obtain the master equation for the perturbed

gauge-invariant variable and search their eigenvalues. Our analysis shows that all higher dimensional

wormholes have an unstable mode against the perturbations with which the throat radius is changed.

The instability is consistent with the earlier numerical analysis in the four-dimensional solution.
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I. INTRODUCTION

Wormholes are popular tools in science fiction as a way
for rapid interstellar travel, time machines, and warp drives
to exist. However, wormholes are also a scientific topic that
emerged just after the birth of general relativity.

Historically, a ‘‘tunnel structure’’ in the Schwarzschild
solution was first pointed out by Flamm in 1916 [1].
Einstein and Rosen [2] proposed a ‘‘bridge structure’’
between black holes in order to obtain a regular solution
without a singularity. The name ‘‘wormhole’’ was coined
by John A. Wheeler in 1957, and its fantastic applications
are popularized after the influential study of traversable
wormholes by Morris and Thorne [3].

Morris and Thorne considered ‘‘traversable conditions’’
for human travel through wormholes, responding to Carl
Sagan’s idea for his novel (Contact), and concluded that
such a wormhole solution is available if we allow ‘‘exotic
matter’’ (negative-energy matter).

The introduction of exotic matter sounds to be unusual
for the first time, but such matter appears in quantum field
theory and in alternative gravitational theories such as
scalar-tensor theories. The Morris-Thorne solution is con-
structed with a massless Klein-Gordon field whose gravi-
tational coupling takes the opposite sign to normal, which
appears in Ellis’s earlier work [4], who called it a drain-
hole, and also in a more general framework of scalar-tensor
theories by Bronnikov in the same year [5]. (See a review,
e.g., by Visser [6] for earlier works. See also, e.g., Lobo [7]
for recent works.)

Since the difference of light bending behavior between the
Ellis wormhole and Schwarzschild black hole were reported
byAbe [8], themicrolensing imageswithwormholes are also
getting attention from the observational point of view [9,10].

One of ourmainmotivations in this paper is the dynamical
features of wormholes. Awormhole is supposed to connect
two space-times as a two-way interface, while a black hole is
an one-way interface. From this analogy, Hayward [11]
proposed a unified understanding of black holes and travers-
ablewormholes, i.e., a wormhole throat can be interpreted as
a degenerate horizon. This idea predicts that a wormhole
changes to a black hole in its dynamical evolutions in the
classical process.
This is numerically shown by one of the authors [12].

Using a dual-null formulation for space-time integration,
they observed that the wormhole is unstable against
Gaussian pulses in either an exotic or normal massless
Klein-Gordon field. The wormhole throat suffers a bifur-
cation of the horizon and either explodes to form an infla-
tionary universe or collapses to a black hole, whether the
total input energy is negative or positive, respectively.
These basic behaviors were repeatedly confirmed by

other groups [13,14], together with a linear perturbation
analysis [15].1 The wormhole solutions with a conformal
scalar field were reported [5,17], and their instabilities are
shown also using linear perturbation analysis [18]. There are
also discussions on the wormhole solutions in alternative or
modified gravity (e.g., [19,20]). Wormhole thermodynamics
is also proposed based on these properties [21].
We, therefore, understand that a four-dimensional Ellis

wormhole is unstable. If this feature can also be seen in
higher dimensional space-time, it should be generic inde-
pendent of the dimension. The higher dimensional theories
such as string or M theories are applied for various un-
solved problems in gravitational phenomena and cosmol-
ogy, and we gain new insights into them. The wormholes in
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1Armendariz-Picon [16] reported that the Ellis wormhole is
stable using perturbation analysis. However, Gonzalez et al. [15]
reported that his conclusion is within the limited class of
perturbations and the Ellis wormhole is unstable.
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higher dimensional general relativity lead to the study in
such fundamental theories.

Wormhole study in higher dimensional space-time is not
a new topic. We can find the articles from 1980s [22,23],
and the recent studies include higher-curvature terms (see,
e.g., [24,25] and references therein). Most of the research
concerns the solutions and their energy conditions mainly,
but to our knowledge there is no general discussion on the
stability analysis of the solutions.

In this article, we construct Ellis solutions in higher
dimensional general relativity, and study their stability
using the linear perturbation technique. The full numerical
studies will be shown in our follow up paper.

This paper is organized as follows. In Sec. II, we derive
our higher dimensional wormhole solutions. In Sec. III, we
show the linear perturbation analysis. The conclusion and
discussion are shown in Sec. IV.

II. WORMHOLE SOLUTIONS

We start from the n-dimensional Einstein-Klein-Gordon
system

S ¼
Z

dnx
ffiffiffiffiffiffiffi�g

p �
1

2�2
n

R� 1

2
�ðr�Þ2 � Vð�Þ

�
; (2.1)

where �2
n is a n-dimensional gravitational constant.

The scalar field � can be called a normal (or ghost) field
if � ¼ 1ð�1Þ.

This action derives the Einstein equation

G�� ¼ �2
nT��; (2.2)

where

T�� ¼ �ð@��Þð@��Þ � g��

�
1

2
�ðr�Þ2 þ Vð�Þ

�
; (2.3)

and the Klein-Gordon equation

h� ¼ ��
dV

d�
: (2.4)

We consider the space-time with the metric

ds2 ¼ �fðt; rÞe�2�ðt;rÞdt2 þ fðt; rÞ�1dr2

þ Rðt; rÞ2hijdxidxj; (2.5)

where hijdx
idxj represents the line element of a unit

ðn� 2Þ-dimensional constant curvature space with curva-
ture k ¼ �1, 0 and volume �k.

In order to construct a static wormhole solution, we
restrict the metric function as f ¼ fðrÞ, R ¼ RðrÞ,
� ¼ �ðrÞ, and � ¼ 0. The ðt; tÞ, ðr; rÞ, and ðt; rÞ compo-
nents of the Einstein equations, then, become

�n�2

2
f2
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respectively, and the Klein-Gordon equation becomes

1

Rn�2
ðRn�2f�0Þ0 ¼ ��

dV

d�
: (2.9)

Hereafter, we assume that the scalar field is ghost
(� ¼ �1) and massless [Vð�Þ ¼ 0]. The Klein-Gordon
equation (2.9) is then integrated as

�0 ¼ C

fRn�2
; (2.10)

where C is an integration constant. The Einstein equations
(2.6), (2.7), and (2.8) are reduced to

ðn� 2ÞR0

R

�
f0

f
þ ðn� 3ÞR0

R

�
� ðn� 2Þðn� 3Þk

fR2

¼ � �2
nC

2

f2R2ðn�2Þ (2.11)

and

ðn� 2ÞR00

R
¼ �2

nC
2

f2R2ðn�2Þ : (2.12)

We assume the throat of the wormhole is at r ¼ 0, and a
is the radius of the throat, i.e., Rð0Þ ¼ a. By the regularity
conditions at the throat,

Rð0Þ ¼ a > 0; and fð0Þ ¼ f0 > 0; (2.13)

where f0 is a constant. Here we can assume a ¼ 1 and
f0 ¼ 1 without loss of generality [26], but we keep a in
the equations in this section for later convenience. We also
assume the reflection symmetry with respect to the
throat:

R0ð0Þ ¼ 0; and f0ð0Þ ¼ 0: (2.14)

There is a shift symmetry of the scalar field � and we
impose �ð0Þ ¼ 0. By substituting these conditions into
Eq. (2.11), the integration constant C is determined as
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�2
nC

2 ¼ ðn� 2Þðn� 3Þka2ðn�3Þ: (2.15)

For the case k ¼ 0, the constant C vanishes and the
solution becomes trivial. For the case k ¼ �1, Eq. (2.15)
is not satisfied and there is no wormhole solution.
Below we assume k ¼ 1.

The solution of Eqs. (2.10), (2.11), and (2.12) is
obtained as

f � 1; (2.16)

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
a

R

�
2ðn�3Þ

s
; (2.17)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 2Þðn� 3Þp

�n

an�3
Z 1

RðrÞn�2
dr: (2.18)

Equation (2.17) is integrated to give

rðRÞ ¼ �mBz

�
�m;

1

2

�
�

ffiffiffiffi
�

p
�½1�m�

�½mðn� 4Þ� ; (2.19)

wherem ¼ 1=2ðn� 3Þ and z ¼ Rm. Bzðp; qÞ is the incom-
plete beta function defined by

Bzðp; qÞ :¼
Z z

0
tp�1ð1� tÞq�1dt; (2.20)

which can be expressed by the hypergeometric function
Fð�;	; 
; zÞ as

Bzðp; qÞ ¼ zp

p
Fðp; 1� q; pþ 1; zÞ: (2.21)

Although Eq. (2.19) is implicit with respect to R, it is rewrit-
ten in the explicit form by using the inverse incomplete
beta function. For n ¼ 4, this solution reduces to Ellis’s
wormhole solution.

f � 1; R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; �¼ ffiffiffi

2
p

tan�1 r

a
: (2.22)

At the throat, we find

R00ðaÞ ¼ n� 3

a
; and �0ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 2Þðn� 3Þp
�na

:

(2.23)

These indicate that the throat of the wormhole has larger
curvature and the scalar field � becomes steeper as n goes
higher. At the spacial infinity, the scalar field �ðrÞ becomes
constant and the function RðrÞ is proportional to r. We
plotted these behaviors in Fig. 1. For n ! 1, the functions
have the limiting solution,R ¼ rþ a and� ¼ �=2ðr > 0Þ.

III. STABILITYANALYSIS

In this section, we investigate the linear stability of
the higher dimensional wormhole solution obtained in
the previous section. In the nonlinear analysis in four-
dimensional space-time, it is shown that the instability occurs
by resolution of the degeneracy of a double trapping horizon
by perturbing the throat radius [12]. Hence, we follow the
analysis in Ref. [15], where the throat radius is not fixed.
We focus on the ‘‘spherical’’ modes, where the

ðn� 2Þ-dimensional constant curvature space is not per-
turbed [27]. In the time-dependent and spherically
symmetric space-time, the metric is written as Eq. (2.5)
generally. We write the perturbed functions as

fðt; rÞ ¼ f0ðrÞ þ "f1ðrÞei!t; (3.1)

�ðt; rÞ ¼ �0ðrÞ þ "�1ðrÞei!t; (3.2)

Rðt; rÞ ¼ R0ðrÞ þ "R1ðrÞei!t; (3.3)

�ðt; rÞ ¼ �0ðrÞ þ "�1ðrÞei!t: (3.4)

FIG. 1 (color online). The n-dimensional wormhole solutions. (a) The circumference radius R and (b) the scalar field� are plotted as
a function of the radial coordinate r. The cases of n ¼ 4–10 are shown.
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" is an infinitesimal parameter. The variables with
subscript 0 denote the static solution obtained in the
previous section. This ansatz contains one gauge mode.

The first-order equations of the Einstein equations
become

R00
1 þ

ðn�3ÞR0
0

R0

R0
1þ

R0
0

2
f01þ

ðn�3Þ
2R0
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ffiffiffiffiffiffiffiffiffiffiffi
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n�2

s
1
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0

�0
1

¼ 0; (3.5)
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2
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ffiffiffiffiffiffiffiffiffiffiffiffi
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2R0
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0f1 � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

n� 2

s
1

Rn�3
0

�1 ¼ 0; (3.7)

for the ðt; tÞ, ðr; rÞ, and ðt; rÞ components, respectively.
Here we assume a ¼ 1. From Eq. (3.7), f1 is

f1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

n� 2

s
1

Rn�3
0 R0

0

�1 � 2

R0
0

R0
1: (3.8)

By substituting Eq. (3.8) into Eqs. (3.5) and (3.6), we find

R00
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(3.9)

With Eq. (3.8), the Klein-Gordon equation turns out to be
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�0
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(3.10)

By introducing the new variable

c 1 ¼ R
n�2
2

0

�
�1 ��0

0

R0
0

R1

�
; (3.11)

we find Eqs. (3.9) and (3.10) give the single master
equation

�c 00
1 þ VðrÞc 1 ¼ !2c 1; (3.12)

with the potential,

VðrÞ ¼ n� 2

2

�
n� 3

R2ðn�2Þ
0

þ ðn� 4ÞR02
0

2R2
0

�
þ 2ðn� 3Þ2

R2ðn�2Þ
0 R02

0

:

(3.13)

The variable c 1 is gauge invariant under the spherically
symmetric ansatz. However, R0

0 is zero at the throat and the

potential V diverges there. Hence, we regularize the master
equation (3.12) [28].
It is easily checked that the master equation (3.12) has a

0-mode solution

�c 1 ¼ 1

R
n�4
2

0 R0
0

: (3.14)

With the 0-mode solution, we define differential operators

Dþ ¼ d

dr
�

�c 0
1

�c 1

and D� ¼ � d

dr
�

�c 0
1

�c 1

: (3.15)

Then the master equation, (3.12), can be written as

D�Dþc 1 ¼ !2�1: (3.16)

FIG. 2 (color online). The potential function WðrÞ is plotted.
WðrÞ is finite everywhere and negative around the throat.

TABLE I. The negative eigenvalues !2.

n !2

4 �1:39705243371511
5 �2:98495893027790
6 �4:68662054299460
7 �6:46258414126318
8 �8:28975936306259
9 �10:1535530451867
10 �12:0442650147438
11 �13:9552091676647
20 �31:5751101285105
50 �91:3457759137153
100 �191:283017729717
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Operating Dþ from the left and defining the new variable
�1 ¼ Dþc 1, we find the regularized master equation

��00
1 þWðrÞ�1 ¼ !2�1; (3.17)

where

WðrÞ ¼ � 1

4R2
0

�
3ðn� 2Þ2
R2ðn�3Þ
0

� ðn� 4Þðn� 6Þ
�
: (3.18)

Figure 2 shows the configurations of the potential function
WðrÞ. Now the potential function is regular everywhere.
For n ¼ 4, WðrÞ has the minimum at the throat and is
negative definite. For n � 5, WðrÞ has the minimum at
the throat, while it increases apart from the throat and
becomes positive for large r.

We search the eigenfunctions �1ðrÞ of Eq. (3.17), and
find that in any dimension n there exists one negative
eigenvalue for!2, which are listed in Table I. The existence
of the eigenfunction with negative !2 implies that the
solution is unstable. We find large negative !2 for higher
n, which indicates the time-scale of instability becomes
shorter. This feature corresponds to the depth of the potential
W. The associated eigenfunctions�1ðrÞ are shown in Fig. 3.

IV. CONCLUSIONS AND DISCUSSIONS

We derived the simplest wormhole solutions in higher
dimensional general relativity. The space-time is assumed
to be static and spherically symmetric, has a ghost
scalar field, and has a reflection symmetry at the throat.

The four-dimensional version is known as the Ellis
(Morris-Thorne) solution. At the throat, both the ingoing
and outgoing expansions vanish, whichmeans that the throat
consists of a degenerate horizon.
The obtained solutions are expressed with the incomplete

beta function. We expect that the solution can be expressed
in a more simple functional form if we use another coor-
dinate system. Or such an expression might have appeared
in the literature, but we have not noticed it. However, we
believe the successive stability analysis is new to us.
From the stability analysis using the linear perturbation

technique, we showed that the solutions have one negative
mode, which concludes that all wormholes are linearly
unstable. The time scale of instability becomes shorter
as n becomes large.
By extrapolating the knowledge of the four-dimensional

Ellis’s wormhole, we expect that these higher dimensional
wormholes also change to a black hole or an expanding
throat. This is actually true. In our succeeding papers, we
will report the numerical evolutions of higher dimensional
wormholes, in which we show the above predictions are
realized. Both linearly perturbed solutions and solutions
with nonlinear pulse input suffer the bifurcations of hori-
zons and turn to either a black hole or expanding throat.
In order to obtain a robust wormhole solution for such a
disturbance, we may have to work in modified gravity
theories, as was recently reported in dilaton-Gauss-
Bonnet gravity [25].
The instability of wormholes requires additional main-

tenance techniques in science fiction. Not only so, but this
indicates that such a simple wormhole construction cannot
be available as an astrophysical object with the present
setting.
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[17] C. Barceló and M. Visser, Classical Quantum Gravity 17,

3843 (2000).
[18] K. A. Bronnikov and S. V. Grinyok, Gravitation Cosmol.

10, 237 (2004).

[19] K. A. Bronnikov, R. A. Konoplya, and A. Zhidenko, Phys.
Rev. D 86, 024028 (2012).

[20] I. D. Novikov and A. Shatskiy, Sov. Phys. JETP 114, 801
(2012).

[21] S. A. Hayward, Phys. Rev. D 79, 124001 (2009).
[22] A. Chodos and S. Detweiler, Gen. Relativ. Gravit. 14, 879

(1982).
[23] G. Clément, Gen. Relativ. Gravit. 16, 131 (1984).
[24] H. Maeda and M. Nozawa, Phys. Rev. D 78, 024005

(2008).
[25] P. Kanti, B. Kleihaus, and J. Kunz, Phys. Rev. Lett. 107,

271101 (2011); Phys. Rev. D 85, 044007 (2012).
[26] Introducing the new variables ~t ¼ t=a, ~r ¼ r=a, ~R ¼ R=a,

we can scale out the throat radius a.
[27] In the higher dimensional space-time, the constant curva-

ture spaces with k ¼ 1 are not the only spherically sym-
metric spaces but there exist other spaces, such as the one
with a Bohm metric. However, here we will call the modes
spherical.

[28] See discussions in Ref. [15] for details.

TAKASHI TORII AND HISA-AKI SHINKAI PHYSICAL REVIEW D 88, 064027 (2013)

064027-6

http://dx.doi.org/10.1088/0004-637X/725/1/787
http://dx.doi.org/10.1088/0004-637X/740/2/121
http://dx.doi.org/10.1088/0004-637X/740/2/121
http://dx.doi.org/10.1103/PhysRevD.87.084045
http://dx.doi.org/10.1103/PhysRevD.87.084045
http://dx.doi.org/10.1142/S0218271899000286
http://dx.doi.org/10.1103/PhysRevD.66.044005
http://dx.doi.org/10.1103/PhysRevD.66.044005
http://dx.doi.org/10.1142/S0218271809015230
http://dx.doi.org/10.1088/0264-9381/26/1/015011
http://dx.doi.org/10.1088/0264-9381/26/1/015011
http://dx.doi.org/10.1088/0264-9381/26/1/015010
http://dx.doi.org/10.1088/0264-9381/26/1/015010
http://dx.doi.org/10.1103/PhysRevD.65.104010
http://dx.doi.org/10.1103/PhysRevD.65.104010
http://dx.doi.org/10.1088/0264-9381/17/18/318
http://dx.doi.org/10.1088/0264-9381/17/18/318
http://dx.doi.org/10.1103/PhysRevD.86.024028
http://dx.doi.org/10.1103/PhysRevD.86.024028
http://dx.doi.org/10.1134/S1063776112040127
http://dx.doi.org/10.1134/S1063776112040127
http://dx.doi.org/10.1103/PhysRevD.79.124001
http://dx.doi.org/10.1007/BF00756803
http://dx.doi.org/10.1007/BF00756803
http://dx.doi.org/10.1007/BF00762442
http://dx.doi.org/10.1103/PhysRevD.78.024005
http://dx.doi.org/10.1103/PhysRevD.78.024005
http://dx.doi.org/10.1103/PhysRevLett.107.271101
http://dx.doi.org/10.1103/PhysRevLett.107.271101
http://dx.doi.org/10.1103/PhysRevD.85.044007

