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Truncated post-Newtonian neutron star model

Hisa-aki Shinkai*
Department of Physics, Washington University, St. Louis, Missouri 63130-4899

~Received 15 May 1998; published 25 August 1999!

As a preliminary step towards simulating the binary neutron star coalescing problem, we test a post-
Newtonian approach by constructing a single neutron star model. We expand the Tolman-Oppenheimer-
Volkov equation of hydrostatic equilibrium by the power ofc22, wherec is the speed of light, and truncate at
various orders. We solve the system using the polytropic equation of state with the indexG55/3, 2, and 3, and
show how this approximation converges together with mass-radius relations. Next, we solve the Hamiltonian
constraint equation with these density profiles as trial functions, and examine the differences in the final metric.
We conclude that the second ‘‘post-Newtonian’’ approximation is close enough to describe a general relativ-
istic single star. The result of this Brief Report will be useful for further binary studies.
@S0556-2821~98!00520-7#

PACS number~s!: 04.25.Nx, 04.25.Dm, 04.40.Dg
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I. INTRODUCTION

Several Earth-based interferometers designed to de
gravitational waves have been recently constructed. De
tors such as the Laser Interferometric Gravitational Wa
Observatory~LIGO!, VIRGO, GEO, and TAMA are ex-
pected to begin operating within a few years~see, e.g.,@1#!.
In order to extract gravitational waveforms from noisy da
and to discuss physical parameters, it is essential to pre
waveforms in advance by both analytical and numerical
proaches.

Binary neutron star systems are one of the most plaus
sources of gravitational waves. They emit energy throu
gravitational radiation, shrink their inspiral orbits gradual
and finally merge with strong emission of gravitation
waves. The system is described by the post-Newtonian~PN!
approximation~see, e.g.,@2#! in the last several minutes be
fore they merge, while in the last phase of coalescence
stars we need to solve the Einstein equations which are a
able only through numerical integration.

After the pioneering numerical works by Oohara and N
kamura in Newtonian gravity with a radiation reaction co
rection @3#, several groups started developing numeri
codes to solve this problem in a more realistic way. Su
hydrodynamical simulations are categorized as in the N
tonian scheme~with or without a radiation reaction term!
@4–11#, post-Newtonian~PN! approximation@12#, and fully
general relativistic~GR! level @13–15#. However, we do not
have a method to construct physically satisfactory initial d
for inspiral binaries in general relativity. Most of the nume
cal tests start their simulations under assumptions of a ce
quasiequilibrium and conformal flatness of spacetime, wit
particular choice of vorticity of fluid~e.g., @16# and refer-
ences therein!.

One way to prepare initial data might be by patching
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PN scheme to the general relativistic one@17#. In this Brief
Report, we construct a simple model and examine how
effort is justified. We solve the Tolman-Oppenheime
Volkov ~TOV! equation of hydrostatic equilibrium of a
single neutron star, which is truncated at the various
levels. We compare the mass and radius of a star as a f
tion of central density using the polytropic equation of sta
We also solve the Hamiltonian constraint equation of
Einstein equations by substituting these density profiles
trial functions, and discuss the differences in the metric.

This study is an extended one from earlier works@18–21#
using the first PN approximation. We intend to make
bridge between the Newtonian and general relativistic so
tions of a neutron star model, both of which were first sho
numerically by Tooper@22#.

In the actual calculations, we used geometrical units
c5G5M (51, wherec, G, andM ( are the speed of light
Newton’s gravitational constant, and the solar mass, res
tively. However,c andG will appear in the text where they
help understanding.

II. TRUNCATED TOV NEUTRON STARS

In general relativity, we have the TOV equation for sol
ing a hydrostatic equilibrium star in spherically symmet
spacetime. We start from the metric

ds252e2F~r !dt21e2L~r !dr21r 2~du21sin2udw2!,
~2.1!

where e2L(r )5@12 2Gm(r )/c2r #21. Then the TOV equa-
tions are written as

dm

dr
54pr 2r t , ~2.2!

dp

dr
52

Gmr t

r 2 S 11
p

r tc
2D S 11

4ppr3

mc2 D S 12
2Gm

rc2 D 21

,

~2.3!

dF

dr
52

1

r t

dp

dr S 11
p

r tc
2D 21

, ~2.4!
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together with the specified equation of state, for which
use the polytropic equation of state

p5KrG5Kr111/n, ~2.5!

wherep and r are the pressure and energy density, resp
tively, andr t is the total mass density:

r t5r1
p

~G21!c2 . ~2.6!

FIG. 1. Total mass as the function of its central density
truncated neutron star model.~a!, ~b!, and~c! are for different equa-
tions of state withG55/3, 2, and 3, respectively. Mass is in units
the solar mass and the central density is in@g/cm3#. The gray solid
line is of Newtonian solutions; the solid line is of general relativ
tic solutions. The dotted line, dashed line, and three-dotted line
of first, second, and third post-Newtonian approximated solutio
respectively.
06750
e
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Obviously, the set of equations recovers the Newtonian li
for c2

˜`.
The idea of this Brief Report is to expand the product

the parentheses in Eqs.~2.3! and ~2.4! and truncate them a
the order of 1/c2i . The ith truncation, then, gives the so
called ith PN approximation.~The case ofi 51 is briefly
mentioned in@23#.! That is, we write Eqs.~2.3! and ~2.4!
schematically:

dp

dr
52

Gmr t

r 2 ~11A!~11B!~12C!21

52
Gmr t

r 2 ~11A1B1C

1AB1AC1BC1C21••• !, ~2.7!

r

re
s,

FIG. 2. Mass and radius relations for truncated neutron
models. Mass is in units of the solar mass and radius is in@km#. The
lines are the same as in Fig. 1.
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dF

dr
52

1

r t

dp

dr
~11A!21

52
1

r t

dp

dr
~12A1A22A31••• !. ~2.8!

If we use these equations with terms on the right-hand s
~RHS! of up to two products ofA,B,C ~such asAB or A2),
then we say the system is in the second PN approximat

We applyG55/3, 2, and 3 for the equation of state (n
51.5, 1, and 0.5 in the polytropic index, respectively! and
compare the solutions of Newtonian, GR, and up to the th
PN approximation.

FIG. 3. The conformal factorc at the origin is displayed as
function of central density, of which we used a trial configurati
for solving Hamiltonian constraint equation. The central density
in units of @g/cm3#. Each line indicates the trial profile as inpu
using the same notation as Fig. 1.
06750
e
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The radius of the star,R, is measured at the pointr !

where densityr t drops low enough@O(10210) in geometri-
cal units#, and given by the proper length,

R5E
0

r !S 12
2Gm~r !

c2r
D 21/2

dr, ~2.9!

with appropriate truncation in the integrand. We express
mass of the star,M, by M5m(r !).

We use the fifth-order Runge-Kutta method~Fehlberg
method! to integrate the equations. In order to check that t
approach is right, we also worked the TOV equations in
harmonic gauge and confirmed that we get identical phys
quantities in the results.

In Fig. 1, we show the total massM as a function of the
central densityrc for the differentG’s and PN levels. Mass is
in units ofM ( and central density is in@g/cm3#, and both are
rescalable with the constantK in the equation of state. Her
we useK in the calculations asK5/354.35 ~for G55/3),
K25102 ~for G52), andK35105 ~for G53) in geometrical
units, whereK5/3 is the number for the pure neutron equati
of state@24#.

We see clearly the convergence of this PN approximat
in all the G’s. However, if the equation of state is stiff, the
the high density configuration differs from that of GR ev
at the higher PN approximation.

From the first PN approximation, we see the existence
the maximum mass. The central density which gives t
maximum becomes larger in the weak gravity approxim
tion.

In Fig. 2, we show the mass-radius relations. In the Ne
tonian limit, the asymptotic behaviors ofM nearM50 are as
M}R23 ~for G55/3), M}R0 ~for G52), andM}R5 ~for
G53). These represent the softness~for G55/3) and stiff-
ness~for G53) of the equation of state. We see that all t
lines in Fig. 2 coincide with this Newtonian limit in the
lower mass limit. The figure also shows us that the first
solution has the same feature as GR.

We also checked the causality constraintdp/dr<1 ~see,
e.g., @25#! in all of the models, and confirmed that the co
straint is always valid.

III. METRIC OUTPUT VIA THE HAMILTONIAN
CONSTRAINT

We next solve the Hamiltonian constraint equation in G
with the trial density profiles obtained above. Our aim is
compare the difference of the output metric and to examin
matching scheme of PN data to the general relativistic o

We use the O’Murchadha-York conformal approach@26#
to solve the Hamiltonian constraint. Defining the conform
factor c and settingg i j 5c4ĝ i j , the constraint becomes

8~3!D̂c5 ~3!R̂c216pGr̂c23, ~3.1!

where (3)D̂ and (3)R̂ are the three-dimensional Laplacia
and Ricci scalar curvature, respectively, defined byĝ i j . Here
we assumedKi j 5K̂ i j 50.

s
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We choose our trial metricĝ i j as conformally flat, and
solve Eq.~3.1! with a trial density configuration ofr̂5r t .
We use the incomplete Cholesky conjugate gradient~ICCG!
method @27# with the Robin boundary conditionc51
1C/r , whereC is a constant, for solving Eq.~3.1!.

In Fig. 3, we show the conformal factorc at the origin as
a function of the central density of the trial configuratio
The three-metric at the center will be given byg i j 5c4d i j .
We see that using the Newtonian configuration as input g
us quite different solutions from the expected ones of G
while all PN trials give similar solutions with GR. Indepen
dently of G, we can say that the second PN approximat
provides closer values for the output metric to those of G

IV. DISCUSSION

In order to justify the recent post-Newtonian approach
to the binary neutron star problem, we constructed a sim
model. By solving the hydrostatic equilibrium equation of
star at theith PN approximation, we showed the convergen
of this approach, the mass and radius relations, and resu
metric output via the Hamiltonian constraint equation.

We conclude that the second PN approximation provi
quite similar density profiles to those of GR, independen
d-

y

,

o-

d

r,
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equations of states. If we use second PN density config
tions as trial functions, we get closer metric solutions
those from GR through the Hamiltonian constraint. Althou
this study is restricted to a hydrostatic single star model,
think that the figures shown here are convenient templa
for further numerical studies.

As shown in@17#, the discontinuous matching surface
PN and GR in the vacuum region will be smoothed out
fully relativistic evolution in a particular slicing condition
Therefore we expect that higher PN initial data will smooth
evolve in the fully relativistic simulations, although there a
many unknown factors as to whether such initial data
numerically satisfactory or not. We are now applying th
approach to construct a binary model including their veloc
corrections together with fully general relativistic hydrod
namical evolutions. This effort will be reported elsewhere
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