ブラックホールを観る ブラックホールを聴く 身近な物理現象と最先端の物理研究

2024年7月27日 枚方公園青少年センター大阪工業大学 真貝寿明(しんかいひさあき)

1 「重力の正体は,万有引力である」とニュートンは気がついた

• 万有引力 = すべてのものは引力で引き合う

万有引力の大きさ = $G\frac{Mm}{r^2}$ = $G \times M \times m \div r \div r$

= 定数 \times 地球の質量 (kg) \times 物体の質量 (kg) \div 地球の半径 (m^2) \div 地球の半径 (m^2)

となるので、地球以外の星での体重が計算できるよ.

星	質量	地球の何倍か	半径	地球の何倍か	重力は何倍か
地球	$6.0 \times 10^{24} \text{ kg}$	1	$6370~\mathrm{km}$	1	1
月	$7.3 \times 10^{22} \text{ kg}$	0.012	$1730~\mathrm{km}$	0.27	
火星	$6.4 \times 10^{23} \text{ kg}$	0.11	$3390~\mathrm{km}$	0.53	
木星	$1.9 \times 10^{27} \text{ kg}$	317	$69900~\mathrm{km}$	11	
土星	$5.7 \times 10^{26} \text{ kg}$	95	58200 km	9.1	
太陽	$2.0 \times 10^{30} \text{ kg}$	333	700000 km	110	

• 脱出速度 (星から脱出するのに必要な速度)

脱出速度の大きさ =
$$\sqrt{2gR} = \sqrt{2 \times g \times R}$$

 $=\sqrt{2\times }$ 重力加速度(重力の大きさ) \times 地球の半径

となるので、地球以外の星でも脱出速度が計算できるよ.

星	重力加速度	地球の何倍か	半径	地球の何倍か	脱出速度	地球の何倍か
地球	9.8 m/s^2	1	$6370~\mathrm{km}$	1	$11.1 \; \mathrm{km/s}$	1
月	1.6 m/s^2	0.16	$1730~\mathrm{km}$	0.27	$2.4 \mathrm{\ km/s}$	
火星	3.7 m/s^2	0.38	3390 km	0.53	$5.0 \mathrm{\ km/s}$	
木星	25.8 m/s^2	2.62	69900 km	11	$60 \mathrm{\ km/s}$	
土星	11.1 m/s^2	1.13	$58200~\mathrm{km}$	9.1	$36 \; \mathrm{km/s}$	
太陽	$271 \mathrm{m/s^2}$	27.6	700000 km	110	615 km/s	

2 脱出速度が光の速さを超えたら・・・

- すべてのもののうち, いちばん速く動くのは, 光で, 秒速 30万 km です. (正確には, 光速は $c=299792458~\mathrm{m/s}$)
- 大きな質量で、小さな半径の天体からは、光でさえも脱出できなくなる. = ブラックホール
- $c=\sqrt{2gR}, g=\frac{GM}{R^2}$ より, $c^2=\frac{2GM}{R}$ だから,ブラックホールの半径 $R=2GM/c^2$ がわかる.G は万有引力定数で, $G=6.67\times 10^{-11} \mathrm{m/s^2/kg}$ 地球がブラックホールになるとしたら,地球の全質量をどれだけの半径に閉じ込めたらいいかな.

星	質量	ブラックホールになる半径				
地球	$6.0 \times 10^{24} \text{ kg}$					
太陽	$2.0 \times 10^{30} \text{ kg}$	2.9 km				
天の川銀河中心	太陽の 400 万倍					
M87銀河中心	太陽の 65 億倍					

3 アインシュタインの相対性理論

アインシュタインは2つの相対性理論をつくりました.

	特殊相対性理論 (1905年)	一般相対性理論 (1915年)
物理法則	光速に近いときの運動法則	大きな重力をもつ物理法則
結論	時間の進み方は相対的である.光	空間も伸び縮みする. 大きな質量
	速に近いほど時間はゆっくり進む	があると空間がゆがむ.ゆがんだ
		空間を動くことがが重力による運
		動となる.
式	$E = mc^2$	$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
予言したもの	核エネルギーの存在	ブラックホール、宇宙の膨張、重
		力波

- ブラックホール, 宇宙の膨張, 重力波のどの予言も, アインシュタイン自身はじめは信じませんでした.
- 宇宙の膨張が発見されたのは、1929年にハッブルとルメートルによる観測です。
- ブラックホールが存在することがわかってきたのは、1960 年代です. ブラックホールが本当に存在することが観測でわかってきたのは、1990 年代の観測です(天の川銀河中心にブラックホールがあることを示した天文学者のゲンツェルとゲズが、2020 年にノーベル物理学賞を受賞). 電波望遠鏡を使ってブラックホールの撮影に成功したことが発表されたのは2019 年です.
- **重力波**が存在することがわかってきたのは、1970 年代です.そして、重力波が直接検出されたのは、2015 年でした(アメリカの LIGO(らいご)グループが 2017 年にノーベル物理 学賞を受賞).

4 レンズと焦点

レンズに平行は光が入ると、焦点に集まる. 凸レンズと凹レンズで比較しよう.

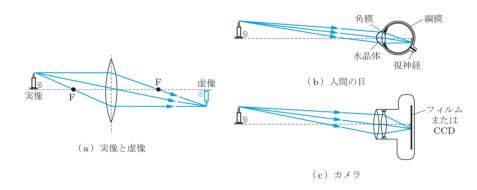


図 1: 凸レンズと焦点

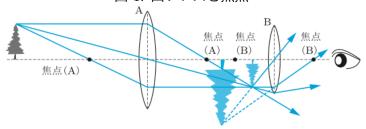


図 2: 凸レンズ 2 枚で望遠鏡になる

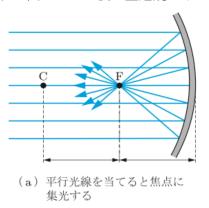


図 3: 凹レンズと焦点

- 電波望遠鏡は凹レンズと同じ. 望遠鏡が大きいほど, 弱い電波を観測できる.
- ブラックホールの撮影をしたイベント・ホライズン・テレスコープ (Event Horizon Telescope; EHT) のグループは,世界中の電波望遠鏡を使って,同じ時間に遠くのブラックホールを観測した.

5 ブラックホールの写真撮影に成功

図 4: (左)イベント・ホライズン・テレスコープのグループによる電波望遠鏡. (右)初めて公開された M87 銀河中心のブラックホール.

6 波

音も光も水面も波.

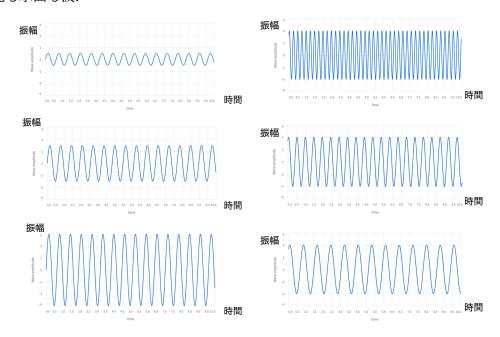


図 5: 振幅(波のゆれる大きさ)のちがい

振動数(1秒間の波の数)のちがい

	音	光
速さ	秒速 340m	秒速 30 万 km
振幅	音の大きさ	光の強さ
振動数	音の高低(ドレミ)	光の色
	大きい振動数ほど高い音	大きい振動数ほど青い色
可聴・可視領域	20-20000Hz の音を聞き取れる	可視光線(赤燈黄緑青藍紫)

• 可視光線,赤外線,紫外線

	宇宙線	ガンマ線	X 線	光			電磁波					
				紫外線	可視光線	赤外線	マイクロ波	超短波	短波	中波	長波	超長波
	10 ⁻¹³ 10 ⁻¹⁰ 10 ⁻⁹ 3.8×10 ⁻⁷ 7.7×10 ⁻⁷ 10 ⁻⁴ 1 10 10 ² 10 ³ 10 ⁴ 380 770 3×10 ¹⁸ 3×10 ¹⁷ 3×10 ¹⁸ 3×10 ¹⁷ 3×10 ¹⁸ 3×10 ¹⁹ 3×											
利用例		医療/食品照射	医療/X線写真	殺菌	光学機器	赤外線写真	携帯電話電子レンジ	テレビ FMラジオ	短波ラジオ	A M ラジオ	電波時計飛行機の通信	

図 6: 人間の目に見える光を可視光線. 赤から紫まで.

• 光は波であることを偏光シートの実験で確かめよう

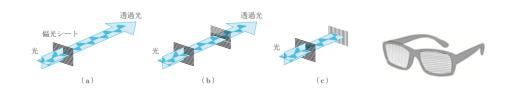


図 7: 偏光シートの実験. 立体映像メガネのしくみ.

● ドップラー効果

波源が移動したり、観測者が移動したりすると、観測される音の振動数が変わる現象.

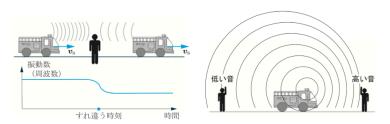
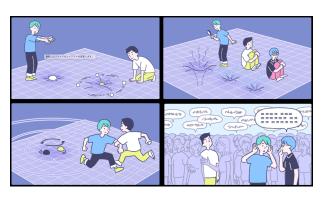



図 8: 音源が近づくときは高い音が聞こえているが、遠ざかるときは低い音になる.

光のドップラー効果では、光源が近づくときは元の色より______、光源が遠ざかるときは元の色より_______見える.

7 重力波の直接観測に成功

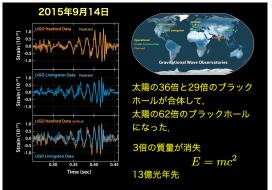


図 9: (左) 連星が合体すると大きな重力波を発生させる. (右) 初めて検出された重力波の波形.

8 いま、研究者が取り組んでいること

- アインシュタインの相対性理論はどこまで正しいのか?
- ブラックホールが他の星を飲み込む様子を観測したい.
- 連星合体以外の重力波を観測したい.
- 銀河中心にあるような超巨大ブラックホールはどのようにしてできたのか?

...... まだまだ、たくさん未解決の問題あり.

- 物理に関する図は、『日常の「なぜ」に答える物理学』(真貝寿明著、森北出版)から.
- 真貝のウェブページ https://www.oit.ac.jp/is/shinkai/index.html
- 本日配布したプリントと, 使ったスライドは, 次の QR コードから取得できます.

