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3 数値相対論の標準的手法
3.1 どのように初期値を準備するか

Initial Data Construction Problem Box 3.1
Prepare all metric and matter components by solving the two constraints:

• The Hamiltonian constraint equation

(3)R+ (trK)2 −KijK
ij = 2κρ+ 2Λ (3.1)

• The momentum constraint equations

Dj(Kij − γijtrK) = κJ i (3.2)

3.1.1 Conformal Approach – York-ÓMurchadha (1974)

Conformal transformation
The idea by ÓMurchadha and York [1] is

solution γij = ψ4γ̂ij trial metric (3.3)

We introduce the decomposition of Kij ,

Kij ⇒
{

trK = γijKij trace part
Aij = Kij − 1

3γijtrK trace-free part
(3.4)

Then, other conformal transformations as consistent with (3.3) are:

γij = ψ4γ̂ij , γij = ψ−4γ̂ij , (3.5)
Aij = ψ−10Âij , Aij = ψ−2Âij , (3.6)
ρ = ψ−nρ̂, J i = ψ−10Ĵ i, (3.7)

and we suppose
trK = t̂rK̂, trA = t̂rÂ = 0. (3.8)

From (3.5), we get

Γi
jk = Γ̂i

jk + 2ψ−1(δi
jD̂kψ + δi

kD̂jψ − γ̂jkγ̂
imD̂mψ), (3.9)

R = ψ−4R̂− 8ψ−5∆̂ψ. (3.10)

where ∆̂ = γ̂jkD̂jD̂k and R̂ = R(γ̂), and also DjA
ij = ψ−10D̂jÂ

ij .
We further decompose Âij to divergence-free (transverse-traceless, TT) part and longitudinal part:

Âij = Âij
TT + (̂lW )ij , (3.11)

where we suppose
D̂jÂ

ij
TT = 0 and t̂rÂTT = 0. (3.12)
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and
(̂lW )ij = D̂iW j + D̂jW i − 2

3
γ̂ijD̂kW

k. (3.13)

Using these terms, we can write

D̂jÂ
ij = D̂j (̂lW )ij ≡ (∆̂lW )i,

= (∆̂W )i +
1
3
D̂i(D̂jW

j) + R̂i
jW

j . (3.14)

With above transformation, the two constraints, (3.1) and (3.2), can be expressed as follows.

• The Hamiltonian constraint equation

8∆̂ψ = R̂ψ − (ÂijÂ
ij)ψ−7 + [

2
3
(trK)2 − 2Λ]ψ5 − 16πGρ̂ψ5−n (3.15)

• The momentum constraint equations

∆̂W i +
1
3
D̂iD̂kW

k + R̂i
kW

k =
2
3
ψ6D̂itrK + 8πGĴ i (3.16)

Equations to solve

Conformal approach (York-ÓMurchadha, 1974) Box 3.2
One way to set up the metric and matter components (γij ,Kij , ρ, J

i) so as to satisfy the con-
straints (3.1) and (3.2) is as follows.

1. Specify metric components γ̂ij , trK, ÂTT
ij , and matter distribution ρ̂, Ĵ in the conformal

frame.

2. Solve the next equations for (ψ, W i)

8∆̂ψ = R̂ψ − (ÂijÂ
ij)ψ−7 + [

2
3
(trK)2 − 2Λ]ψ5 − 16πGρ̂ψ5−n (3.15)

∆̂W i +
1
3
D̂iD̂kW

k + R̂i
kW

k =
2
3
ψ6D̂itrK + 8πGĴ i (3.16)

where
Âij = Âij

TT + D̂iW j + D̂jW i − 2
3
γ̂ijD̂kW

k. (3.17)

3. Apply the inverse conformal transformation and get the metric and matter components
γij , Kij , ρ, J

i in the physical frame:

γij = ψ4γ̂ij , (3.18)

Kij = ψ−2[ÂTT
ij + (̂lW )ij ] +

1
3
ψ4γ̂ijtrK, (3.19)

ρ = ψ−nρ̂, (3.20)
J i = ψ−10Ĵ i (3.21)
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Comments

• Using the idea of conformal rescaling, we have a way to fix 12 components of (γij ,Kij) that
satisfy 4 constraints.

• The Hamiltonian constraint, (3.15), is a non-linear elliptic equation for ψ, so that we have to
solve it by an iterative method.

• The momentum constraints, (3.16), are PDEs for W i and coupled with (3.15). If we assume
trK = 0, then two constraints are decoupled. Normally people assume trK = 0 (maximal slicing
condition) or (trK) =const. (constant mean curvature slicing) for this purpose.

• For simplicity, people assume the background metric γ̂ij is conformally flat γ̂ij = δij . The
physical appropriateness of conformal flatness is often debatable.

• Two freedom of ÂTT
ij corresponds to the one of gravitational wave. However, there have been

no systematic discussion how to specify them, except applying tensor harmonics in a linearized
situation.

Solving the Hamiltonian constraint – Several tips
Two Methods:

1. Solve the non-linear equation (3.15) directly.

2. Solve the linearized equation ψ = ψ0 + δψ iteratively.

8∆̂ψ = E ψ + F ψ−7 +Gψ5 +H ψ−3 + I ψ−1

= [E − 7Fψ−8
0 + 5Gψ4

0 − 3Hψ−4
0 − 2Iψ−2

0 ]ψ + [8Fψ−7
0 − 4Gψ5

0 + 4Hψ−3
0 + 2Iψ−1

0 ]

Under an appropriate boundary condition, such as Robin BC ψ = 1 + const./r, or Dirichlet BC
ψ = 1 +Mtotal/2r.

Solve the momentum constraints – Several tips
A couple of methods:

1. Solve the non-linear equations (3.16) directly.

2. Bowen’s method for conformally flat case [GRG14(1982)1183]
Under the (∇iK = 0) condition, (3.16) becomes

∆W i +
1
3
∇i∇jW

j = 8πSi.

By introducing a decomposition of W i into vector and gradient terms

W i = V i − 1
4
∇iθ,

the equations to solve are:

∆V i = 8πSi, (3.22)
∆θ = ∇iV

i, (3.23)
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If the source is of finite extent, then the the asymptotic behavior of V i and θ are given by

V i = −2
∞∑
l=0

Qij1···jlnj1 · · ·njl

1
rl+1

, (3.24)

θ = −
∞∑
l=1

Q{ij1···jl−1}ninj1 · · ·njl−1

1
rl−1

+
∞∑
l=0

2(l + 1)
(2l + 1)(2l + 3)

Qkj1···jl
k nj1 · · ·njl

1
rl+1

+
∞∑
l=1

2l − 1
2l + 1

M{ij1···jl−1}ninj1 · · ·njl−1

1
rl+1

(3.25)

where ni = xir−1 in the Cartesian cordinate, the multipoles Q and M are defined as

Qij1···jl ≡ (2l − 1)!!
l!

∫
Si(r)x{j1xj2 · · ·xjl}dV,

M ij1···jl ≡ (2l − 1)!!
l!

∫
r2Si(r)x{j1xj2 · · ·xjl}dV,

and where brackets denote the completely symmetric trace-free part

Z{ij1···jl} = Z(ij1···jl) − l

2l + 1
Z

k(j1···jl−1

k δjli)

3.1.2 Conformal Approach : N-dimensional case

We generalized the above conformal approach by York and ÓMurchadha (1974) to N -dimensional
version and also for Gauss-Bonnet gravity. Here, we show only for the N -dimensional equations.

We start from the conformal transformation

solution γij = ψ2mγ̂ij , γij = ψ−2mγ̂ij trial metric

this gives

R = ψ−2m
{
R̂− 2(N − 1)mψ−1(D̂aD̂aψ) + (N − 1)[2 − (N − 2)m]mψ−2(D̂ψ)2

}
,

Rij = R̂ij −mγ̂ijψ
−1D̂aD̂

aψ − (N − 2)mψ−1D̂iD̂jψ

+ (N − 2)m(m+ 1)ψ−2D̂iψD̂jψ −m[(N − 2)m− 1]ψ−2(D̂ψ)2γ̂ij ,

Rijkl = ψ2m
{
R̂ijkl +mψ−1γ̂il[D̂jD̂kψ − (m+ 1)ψ−1D̂jψD̂kψ]

−mψ−1γ̂ik[D̂jD̂lψ − (m+ 1)ψ−1D̂jψD̂lψ]
+mψ−1γ̂jk[D̂iD̂lψ − (m+ 1)ψ−1D̂iψD̂lψ]

−mψ−1γ̂jl[D̂iD̂kψ − (m+ 1)ψ−1D̂iψD̂kψ] +m2ψ−2(D̂ψ)2(γ̂ilγ̂jk − γ̂ikγ̂jl)
}
.

Decompose the extrinsic curvature Kij as Kij ≡ Aij +
1
N
γijK, and assume

Aij = ψ`Âij , Aij = ψ`−4mÂij , and K = ψτ K̂.

Conformal transformation of the divergence DjA
ij becomes

DjA
ij = ψ−4m+`D̂jÂ

ij + ψ−4m+`−1[`+m(N − 2)]ÂijD̂jψ, (3.26)
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which indicates to set ` = −m(N − 2) = −2 for simplifying the equation. and for the components in
the constraints,

KijK
ij = AijA

ij +
1
N
K2 = ψ−12ÂijÂ

ij +
1
N
K̂2, (3.27)

DjA
ij = ψ−10D̂jÂ

ij . (3.28)

Decompose Aij into the divergence-free (transverse-traceless, TT) part, Aij
TT , and the rest (longitudinal

part), such as
Âij = Âij

TT + Âij
L , where D̂jÂ

ij
TT = 0. (3.29)

The latter part can be expressed using a vector potential, W i, as Âij
L = D̂iW j + D̂jW i − 2

N
γ̂ijD̂kW

k.

When matter exists, define also the conformal transformation

ρ = ψ−pρ̂, J i = ψ−qĴ i.

• Hamiltonian constraint equation, then, becomes

2(N − 1)mD̂aD̂
aψ − (N − 1)[2 − (N − 2)m]m(D̂ψ)2ψ−1

= R̂ψ − N − 1
N

εψ2m+2τ+1K̂2 + εψ−2m+2`+1ÂabÂ
ab + 2εκ2ρ̂ψ−p − 2Λ̂ (3.30)

We found that the combination ` = 2/(N −2) and p = −1 makes the RHS of (3.30) linear. If we
choose ` = −2, which will make the momentum constraint simpler as we see later, (3.30) also
remains as a simple equation.

• We obtain the momentum constraint equation as

D̂aD̂
aWi +

N − 2
N

D̂iD̂kW
k + R̂ikW

k

+ψ−1[`+ (N − 2)m]
(
D̂aW b + D̂bW a − 2

N
γ̂abD̂kW

k
)
γ̂biD̂aψ

−ψ2m−`N − 1
N

D̂i(ψτ K̂) = κ2ψ4m−`−qĴi (3.31)

We found that the choice of ` = −2 cancels the mixing term between ψ and W i. The decoupling
feature between two constraints is available when K̂ =const. and q = 8/(N − 2) + 2.
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Conformal approach for solving constraints in (N + 1)-dim. [2] Box 3.3
One way to set up (γij ,Kij , ρ, J

i) so as to satisfy the constraints:

1. Specify metric components γ̂ij , trK, ÂTT
ij , and matter distribution ρ̂, Ĵ in the conformal

frame.

2. Solve the next equations for (ψ, W i)

(A) Hamiltonian constraint

4(N − 1)
N − 2

∆̂ψ = R̂ψ − εψ2`+1−4/(N−2)(K̂2 − K̂abK̂
ab) + 2εκ2ρ̂ψ−p − 2Λ̂(3.32)

(B) momentum constraint

∆̂Wi +
N − 2
N

D̂iD̂kW
k + R̂ikW

k + ψ−1(`+ 2)
(
D̂aW b + D̂bW a − 2

N
γ̂abD̂kW

k
)
γ̂biD̂aψ

−N − 1
N

[(
`− 4

N − 2

)
(D̂iψ)K̂ + D̂iK̂

]
= κ2ψ8/(N−2)−`−qĴi (3.33)

3. Apply the inverse conformal transformation and get the metric and matter components
γij , Kij , ρ, J

i in the physical frame:

γij = ψ4/(N−2)γ̂ij ,

Kij = ψ`[ÂTT
ij + (̂lW )ij ] +

1
N
ψ`−4/(N−2)γ̂ijtrK,

ρ = ψ−pρ̂,

J i = ψ−qĴ i
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3.2 どのようにゲージを設定するか
The standard 3+1 formulation allows us to choose gauge conditions (slicing conditions) for every time
step. The fundamental guidelines for fixing the lapse function α and the shift vector βi:

• to avoid the foliation hitting the physical and coordinate singularity in its evolution.

• to make system suitable for physical situation.

• to make the evolution system as simple as possible.

• to enable the gravitational wave extraction easy.

I list several essential slicing conditions below. The notations hereafter follows those of §2.1 (ADM
formulation).

3.2.1 Lapse conditions

geodesic slice α = 1 GOOD
BAD

simple, easy to understand
no singularity avoidance

harmonic slice ∇a∇axb = 0 GOOD
GOOD
BAD

simplify eqs.,
easy to compare analytical investigations
no singularity avoidance or coordinate
pathologies

[2]-[7]

maximal slice K = 0 GOOD
BAD

singularity avoidance
have to solve an elliptic eq.

[1],[8]-
[15]

maximal slice
(K-driver)

∂tK = −c2K G&B
GOOD

same with maximal slice,
easy to maintain K = 0

[12]

constant mean
curvature

K = const. G&B
GOOD

same with maximal slice,
suitable for cosmological situation

[16]-[18]

polar slicing Kθ
θ + Kϕ

ϕ = 0, or
K = Kr

r

GOOD
BAD

singularity avoidance in isotropic coord.
trouble in Schwarzschild coord.

[19]-[21]

algebraic α ∼ √
γ,

α ∼ 1 + log γ
GOOD
BAD

easy to implement
not avoiding singularity

Maximal slicing
This is always the first one to be mentioned as a singularity avoiding gauge condition. The name of
‘maximal’ comes from the fact that the deviation of the 3-volume V =

∫ √
γd3x along to the normal

line becomes maximal when we set K = 0. This is simply written as

K = 0 on Σ(t). (3.34)

Pioneering idea can be seen in Lichnerowicz [8], and it was extended by York [1]. This condition
is supposed to be applied in simulations that a singularity will appear during evolutions such as
gravitational collapses. The actual equation for determining the lapse function α can be obtained
from ∂tK = ∂t(Kijγ

ij) = 0. By substituting the evolution equations, we get

DiDiα = { (3)R+K2 + 4πG(S − 3ρH) − 3Λ}α, (3.35)

or by using the Hamiltonian constraint further,

DiDiα = {KijK
ij + 4πG(S + ρH) − Λ}α. (3.36)
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This is an elliptic equation. When the curvature is strong (i.e. close to the appearance of a singularity),
the RHS of equation become larger, hence the lapse becomes smaller. Therefore the foliation near the
singularity evolves slowly.

For Schwarzschild black-hole space-time, Estabrook et al. [10] showed that the maximal slicing
condition allows the 3-surface to reach into r = 1.5M in the limit t → ∞, that is inside of the
event horizon, r = 2M . However, it is also reported that the difference of α-evolution causes the
grid-stretching problem.

3.2.2 Shift conditions

geodesic slice βi = 0 GOOD
BAD

simple, easy to understand
too simple

minimal distortion min ΣijΣij GOOD
BAD

geometrical meaning
elliptic eqs., hard to solve

[1]

minimal strain minΘijΘij G&B same with minimal distortion [1]

Minimal distortion condition, minimal strain condition
Any singularity avoiding slice conditions causes the grid stretching problem. Smarr and York [1]
proposed the condition which minimize the distortion in a global sense.

Let us define the expansion tensor Θµν and the distortion tensor Σij . Let the normal direction
to the surface nµ, and the coordinate-constant congruence tµ = αnµ + βµ. By projecting tµ onto the
hypersurface using the projection operator ⊥a

b = δa
b + nanb,

Θµν = ⊥∇(νtµ) = −αKµν +
1
2
D(µβν) (3.37)

We then extract this traceless part and define,

Σij = Θij −
1
3
Θγij = −2α

(
Kij −

1
3
γijK

)
+

1
2

(
D(iβj) −

1
3
Dkβk

)
. (3.38)

The minimal distortion condition is to choose βi which minimize the action

δS[β] = δ{1
2

∫
ΣijΣijd3x} = 0. (3.39)

This condition can be written as DjΣij = 0, or

DjDjβi +DjDiβj −
2
3
DiDjβ

j = Dj
[
2α
(
Kij −

1
3
trKγij

)]
, (3.40)

or ∆βi +
1
3
Di(Djβj) +Rj

iβj = Dj
[
2α
(
Kij −

1
3
trKγij

)]
, (3.41)

where ∆ = DiDi.
Similarly, we can define the minimal strain condition by minimizing ΘijΘij .
The both requires non-linear elliptic equations and hard to solve. Several group solves “pseudo”-

minimal distortion condition by replacing the covariant derivatives to the partial derivatives [22]. This
simplification also works for inspiral binary neutron star evolution.
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3.3 Ashtekar形式を用いた数値相対論
3.3.1 History

Ashtekar’s formulation of general relativity[11] has many attractive features comparing to the con-
ventional ADM formulation. Therefore, an application to numerical simulations was suggested [2]
soon after Ashtekar completed his formulation, but had not yet been completed more than a decade.
Historically, an application to numerical relativity of the connection formulation was also suggested
[3, 4] using Capovilla-Dell-Jacobson’s version of the connection variables [5], which produce an direct
relation to Newman-Penrose’s Ψs.

The first full numerical application was reported by Shinkai and Yoneda [58, 71]. They developed
a plane symmetric evolution code, and showed comparisons of numerical stability due to the different
hyperbolicity in the context of formulation problem (§4, in this lecture note). They also showed that
their new formulation called λ-system, which makes the evolution system asymptotically constrained,
works as desired.

In this subsection, we only look at how they realized numerical experiments from the viewpoint of
methodology.

3.3.2 Numerical treatments by Shinkai-Yoneda

Shinkai and Yoneda coded up the program so as to compare the evolutions of spacetime with three
different sets of dynamical equations (Ashtekar’s original, and two modified sets) but with the common
conditions: the same initial data, the same boundary conditions, the same slicing condition and the
same evolution scheme.

They considered the plane symmetric vacuum spacetime without cosmological constant. This
spacetime has the true freedom of gravitational waves of two polarized (+ and ×) modes. They
applied the periodic boundary conditions to remove any difficulties caused by numerical treatment of
the boundary conditions. The initial data are given by solving constraint equations in ADM variables,
using the standard conformal approach by York and O’Murchadha (Box 3.2 in this lecture note).

When we use Ashtekar’s variables for evolution, we transform the ADM initial data in terms of
Ashtekar’s variables. The results are analyzed by monitoring the violation of the constraint equations
which are expressed using the same (or transformed if necessary) variables.

Reformulation of the Ashtekar evolution equations

They constructed three variations of Ashtekar’s evolution system (see Table 3.1 for summary).

(a) The original set of dynamical equations (2.75) and (2.76) [the original equations] already forms
a weakly hyperbolic system [12]. So that we regard the mathematical structure of the original
equations as one step advanced from the standard ADM.

system variables Eqs of motion remark
I Ashtekar (weakly hyp.) (Ẽi

a,Aa
i ) (2.75), (2.76) (original) “original” eqs.

II Ashtekar (strongly hyp.) (Ẽi
a,Aa

i ) (3.42), (3.43) (with κ = 1) (3.45) required
III Ashtekar (symmetric hyp.) (Ẽi

a,Aa
i ) (3.42), (3.43) (with κ = 1) (3.44) required

adj Ashtekar (adjusted) (Ẽi
a,Aa

i ) (3.42), (3.43) (with κ 6= 1)

λ Ashtekar-λ-system (Ẽi
a,Aa

i ,
λ, λi, λa)

controls CH , CMi, CGa

Table 3.1: List of Ashtekar evolution systems that applied in [58].
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(b) Further, we can construct higher levels of hyperbolic systems by restricting the gauge condition
and/or by adding constraint terms, CASH

H , CASH
Mi and CASH

Ga , to the original equations.

– by requiring additional gauge conditions or adding constraints to the dynamical equations,
we can obtain a strongly hyperbolic system [12],

– by requiring additional gauge conditions and adding constraints to the dynamical equations,
we can obtain a symmetric hyperbolic system [70, 12].

(c) Based on the above symmetric hyperbolic system, we can construct an Ashtekar version of the λ-
system [20] which is robust against perturbative errors for both constraints and reality conditions
[57].

In order to obtain a symmetric hyperbolic system, we add constraint terms to the right-hand-side of
(2.75) and (2.76). The adjusted dynamical equations,

∂tẼ
i
a = −iDj(εcbaN∼ Ẽ

j
c Ẽ

i
b) + 2Dj(N [jẼi]

a ) + iAb
0εab

c Ẽi
c + κ1P

i
ab CASH

G
b, (3.42)

where P i
ab ≡ N iδab + iN∼ εab

cẼi
c,

∂tAa
i = −iεab

cN∼ Ẽ
j
bF

c
ij +N jF a

ji + DiAa
0 + κ2Q

a
i CASH

H + κ3Ri
ja CASH

Mj , (3.43)

where Qa
i ≡ e−2N∼ Ẽ

a
i , Ri

ja ≡ ie−2N∼ ε
ac

bẼ
b
i Ẽ

j
c

form a symmetric hyperbolicity if we further require κ1 = κ2 = κ3 = 1 and the gauge conditions,

Aa
0 = Aa

iN
i, ∂iN = 0. (3.44)

We remark that the adjusted coefficients, P i
ab, Q

a
i , Ri

ja, for constructing the symmetric hyperbolic
system are uniquely determined, and there are no other additional terms (say, no CASH

H , CASH
M for ∂tẼ

i
a,

no CASH
G for ∂tAa

i ) [12]. The gauge conditions, (3.44), are consequences of the consistency with (triad)
reality conditions.

We can also construct a strongly (or diagonalizable) hyperbolic system by restricting to a gauge
N l 6= 0,±N

√
γll (where γll is the three-metric and we do not sum indices here) for the original

equations (2.75), (2.76). Or we can also construct from the adjusted equations, (3.42) and (3.43),
together with the gauge condition

Aa
0 = Aa

iN
i. (3.45)

As for the strongly hyperbolic system, we hereafter take the latter expression.

metric and the initial data construction
We consider the plane symmetric metric,

ds2 = (−N2 +NxN
x)dt2 + 2Nxdxdt+ γxxdx

2 + γyydy
2 + γzzdz

2 + 2γyzdydz (3.46)

where the components are the function of N(x, t), Nx(x, t), γxx(x, t), γyy(x, t), γzz(x, t), γyz(x, t). N
and Nx are called the lapse function and the shift vector.

We prepare our initial data by solving the ADM constraint equations, (2.14) and (??), using the
conformal approach (Box 3.2). Since we consider only the vacuum spacetime, the input quantities are
the initial guess of the 3-metric γ̂ij , the trace part of the extrinsic curvature trK, and the transverse
traceless part of the extrinsic curvature ÂTT . For simplicity, we impose ÂTT = 0 and trK = K0

(constant). The Hamiltonian constraint, then, becomes an equation for the conformal factor, ψ:

8∆̂ψ := 8
1√
γ̂
∂i(γ̂ij

√
γ̂∂jψ) = R̂ψ +

2
3
(K0)2ψ5, (3.47)
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where γ̂ = det γ̂ij . The momentum constraint is automatically satisfied by assumption. The initial
dynamical quantities γij , Kij are given by the conformal transformation,

γij = ψ4γ̂ij , Kij =
1
3
ψ4γ̂ijK0. (3.48)

We solve (3.47) under the periodic boundary conditions using the incomplete Cholesky conjugate
gradient (ICCG) method.

We can set two different modes of gravitational waves. One is the +-mode waves, which is given
by setting a conformal guess metric as (in a matrix form)

γ̂ij =

 1 0 0
sym. 1 + a exp(−b(x− c)2) 0
sym. sym. 1 − a exp(−b(x− c)2)

 (3.49)

where a, b, c are parameters. The other is the ×-mode waves, given by

γ̂ij =

 1 0 0
sym. 1 a exp(−b(x− c)2)
sym. sym. 1

 (3.50)

where a, b, c are parameters again. Both cases, we expect non-linear behavior when wave’s curvature
becomes quite large compared to the background. In the collision of a +-mode wave and a ×-mode
wave, we also expect to see the mode-mixing phenomena which is known as gravitational Faraday
effect. These effects are confirmed in our numerical simulations.

Transformation of variables: From ADM to Ashtekar
We need to transform the dynamical variables on the initial data when we evolve them in the connection
variables. We list the procedure to obtain (Ẽi

a,Aa
i ) from (γij ,Kij). This procedure is used also when

we evaluate the constraints, CASH
H , CASH

Mi , CASH
Ga for the data evolved using ADM variables.

From the three-metric γij to Ẽi
a:

1. Define the triad Ea
i corresponding to the three-metric γij . We take

Ea
i =

 E1
x E1

y E1
z

E2
x E2

y E2
z

E3
x E3

y E3
z

 =


√
γxx 0 0
0 e22 e23
0 e32 e33

 . (3.51)

and set simply e23 = e32. The relation between the metric and the triad becomes

e222 + e233 = γyy, e223 + e233 = γzz, (e22 + e33)e23 = γyz. (3.52)

For the case of +-mode waves, we define naturally, e22 = √
γyy, e33 =

√
γzz, e23 = 0. For ×-mode

waves, we also take a natural set of definitions, e22 = e33 = [(γyy + (γ2
yy − γ2

yz)
1/2)/2]1/2 and

e23 = γyz/2e22 which are given by solving e222 + e233 = γyy and 2e22e23 = γyz.

2. obtain the inverse triad Ei
a from triad Ea

i .

3. calculate the density, e, as e = detEa
i .

4. obtain the densitized triad, Ẽi
a = eEi

a.

From three-metric (γij ,Kij) to Aa
i :

1. prepare the triad Ea
i and its inverse Ei

a.
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2. calculate the connection 1-form ωbc
i = Ebµ∇iE

c
µ. This is expressed only using partial derivatives

as 9

ωbc
i = Ejb∂[iE

c
j] − EidE

kbEjc∂[kE
d
j] + Ejc∂[jE

b
i]. (3.53)

3. Aa
i = −KijE

ja − i
2ε

a
bcω

bc
i .

Transformation of variables: From Ashtekar to ADM
In contrast to the previous transformation, we also need to obtain (γij ,Kij) from (Ẽi

a,Aa
i ) when

we evaluate the metric output or ADM constraints when we evolve the spacetime using connection
variables. This process is only required at an evaluation times, not required at every time step (unless
we use the gauge condition which is primarily defined using ADM quantities).

From densitized inverse triad Ẽi
a to three-metric γij :

1. calculate the density e as e = (det Ẽi
a)

1/2.

2. get the three inverse metric as γij = Ẽi
aẼ

j
a/e

2.

3. obtain γij .

From (Ẽi
a,Aa

i ) to the extrinsic curvature Kij :

1. prepare the un-densitized inverse triad, Ei
a = Ẽi

a/e.

2. prepare triad Ea
i .

3. calculate the connection 1-form εabcω
bc
i .

4. calculate Za
i , which is defined as 10 Za

i := −Aa
i + i

2ε
a
bcω

bc
i (= KijE

ja), and get Kij = Za
i Eja.

Gauge conditions
Their choice of the slicing (gauge) condition was the simplest one.

(1) the simplest geodesic slicing condition for the lapse function,

(2) the simplest zero shift vector Nx = 0, and

(3) the natural choice of triad lapse function Aa
0 = Aa

iN
i [= 0 if Nx = 0, which is suggested from

(3.44) or (3.45)].

However, in the Ashtekar formalism, the densitized lapse function N∼ is the fundamental gauge quantity
(rather than N). Therefore we try two conditions for the lapse,

(1a) the standard geodesic slicing condition N = 1, which will be transformed to N∼ = 1/e when we
apply this condition in Ashtekar’s evolution system, and

9This is from the definitions, ωbc
i := Ejb∇iE

c
j and ωabc := Ejaωbc

j , and a relation

3ω[abc] − 2ω[bc]a = ωa[bc] + ωb[ca] + ωc[ab] − ωabc + ωcba = ωabc.

Using the densitized triad, eq. (3.53) can be also expressed as

ωbc
i =

2

e2
Ẽjb(∂[iẼ

c
j]) +

1

e4
ẼjbẼc

i Ẽa
k (∂jẼ

k
a) +

1

4e4
ẼiaẼkbẼj

c (∂jẼ
a
k ), taking [bc].

10This is from the original definition of Aa
i , Aa

i := ω0a
i − (i/2)εa

bc ωbc
i .
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(1b) the densitized geodesic slicing condition N∼ = 1, which will be transformed to N = e when we
evolve the system using ADM equations.

In practice, such a transformation using the density e will not guarantee that the Courant condition
holds if we fix the time evolution step ∆t 11. Therefore we need to rescale the transformed lapse [ N∼
in (1a), N in (1b)] so that it has a maximum value of unity, in order to keep our evolution system
stable.

If we apply the standard geodesic slice, then we can compare the weakly hyperbolic system with
the symmetric hyperbolic one. Similarly if we apply the densitized geodesic slice, then we can compare
the (original) weakly hyperbolic system with the strongly hyperbolic one.
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