ECint)EF DiE < FH

Frontiers of Physics & Cosmology

5150 2026/1/19

58 G
Isaaki Shinkal

https://www.olit.ac.jp/labs/is/system/shinkal/mukogawa/

LiR— k§EoHEID  1/30(&) 23:59 1


https://www.oit.ac.jp/labs/is/system/shinkai/mukogawa/

[L7R—

NG EFimORIRGS

R R
o MNZEREEZXDD, HIFLEZXSD DRFRARXAD. WRTRESERETIOHELVD.

o FKIR—EIDEFE W DEFOEHA (1949) 7V ¥ F 2 I MOFZERICEHFLTVWET. ZOEF%
FEHTLEIWN,

o ZLT, RDF—TU—F»622UEZH-T, WPFREMBREREZHAL T I,
i3 a0z 3640 MERER) TFREEMRE) FARE) Tal—71 2 H—0D3H)
EPR NS Ry X1 Th2RILBR) TARIN=F U8R TZHFEIR]

o HRIZ, HEADZDMEICEHT 2B ZBEVWL 7.

(%3
o A4 HIMK 3-5 BIEEE. R"MIIAE. LETHIUE, RRREZBMN LTIV (R=IBREIZED D) .

o BEYL LXK (web R=TZL) 3Facd . (Fg, HEEz&ETARHHLEOZE LR, &
LALHIHT %% 6 OK).

REFIR
¢ Google Classroom DifE ¥ L THH. FEZOLSIXERRZ L-H D21
o IRIXYNE, 20254128280 (H) 23:59 EJZ?'fﬁZO,.“ﬁ

o IR 7 7 A NDARNX, Q FF XXXXXXX OO00) okt 342k, (Q I Quantum D JEF
TULR—=MFIFT27200bD, FRNIKH /AR Y 2 7T, XXXXXXX Z#EERS, OO000I

%) 352k, 774»%&@” AT, FEESIEAT. ~HFHEXva—-FLTaid /29,
D7 7ANAHTBENLET.

o 77 ANKADFIDIZDH, XA bb - EERFERIEE - FRRRE - KGZGHT 22 L.
o pdf 77 ANVDLEE L WA, word 7 7 4/ L TH KL,




[L7R—

R

1

(11)

~EE]

LITORE (1)-(6) &b, 1 0FEATHAE L. (Ad 1~1.5 BIEEE)
DT ORI (7)-(12) &b, 1 0F#ATHHAE K. (Ad 1~1.5 BEEHE)

ZOMETRK->T MY Z7IZOWT, B THEZEZZT, MEMNZRE. (FEEH)

i REOHIERLR—H

o 77 —FE LR R

TV VADBFRE L T KEEH DR

= a— b UYEERZIT AN T WL EE
VI BT B 1905 FEDFFOERE
TAYYaRALY  RENAVAF— a0 —E DT Ky 7R

V' w VIR Y B EHRORS frRCER | - o _
o BEY LIk (web R—I &) REMHIUE, BT L. BITHTAHED SN BHEITHGE T

TAYaRALDEA L FHIE)
H— R R—E X = THIILF—

£12E7T7Y Y Mot

RE30= 5

3. BEEDPL5IHT 2D ERAD, 5IHEMILTZESHIL TS L.)

o A VA —2v b FLOXZSIHT 2 L 21X, BEEFLFHLZMBEADOD DIZEITSZ Z L.

A 70— aVES

75w 7 R—IVHE

CNF XTI v — KFEDNR
B ¥ ToRBEDORIE G E

o KiMIIFAE. BDETHNZE, RPREZHRM LTIV (R=IBHIZEZDZ) .

{ET I R FIE
_‘,;.5 - Z big 5 LTbi’)Z) D> e Google Classroom @ﬁ%%t LTHRH. FEHEZOHESRERERY L-H02EH
. ko, 20264E 1 H30H (&) 23:59

o T 7 A LDAFNE, [C %R XXXXXXX OO0 (C AH 2212345 R/ F) oFRL T3 L.

(C 1% Cosmology DIEXFTLR— FXHIFT 572D D, FRNIKH /AR Y 2 7T, XXXXXXX

EFERS, OO00IRKH) 352k, 774 VAKIZIBZEAEZANT, FEESITEAT. —fFEXY

va—RLTiHaL=d, TO77A4AVHTBEWLET.

o 77 ANKNDAIDIZS, XA ML« FEFRIAE « FREES - REZREE TS L.




RAFDER A~

%‘{@-%z“ & % ﬁsa(:-’zrlkxos +t& BT (R Y 2T+
FiEh T RXE N

- = ﬁfi@
a2 _ ) : ;
Z=430m. AR, NFHE
TIIEREHEARD2MmD R D = E

O A
S

=g D, NEYEBAMREE g
555 5
_ Y, 3

Cuém'.%;ﬁ == 0920m.

POARKXAAE
(==00m. 1mOEEESD
vk S IN S oo e

45 5 BER "%;xgirﬁm
\_ J e &

,

- ‘ TeE500m. HRMESEEEEL D)
BT ERNE ({mE420m, 1mMOEEEH D, i orim
EYER IS (RS BT ' /

_ Y, 74 LA NIN—THERL 4




BBElIDOI "W YNR—/\—h\5

12

J*% RIAFCGE 9 BIR 6 (-0 228, Y R e ¥ w05 a0y G <o
B, It gpppd VASYIES X [YRL LTS 3 TE) U JPVOR PO,

https://apod.nasa.gov/apod/
Astronomy Picture of the Day &L \SNASADAR—INEHITIHTY.

https://apod.nasa.gov/apod/ap2601 14.html

https://apod.nasa.gov/apod/ap260110.html

Jupiter with the Great Red Spot
2026.01.07 15:45UT
© Christopher Go (Cebu, Philippines)

https://ja.wikipedia.org/wiki/ AR & —E# T s

B

BRI KRR

4w P FAMOQN—=TKRE

BEEI R SRR/ (A

NS ASBERATREMBELTLS

1R K ER
REEEXZHLEK
77 RIVLFER

7 B S AR

.

- l‘r
/*\la.:ll ) M AR

LICHUZ®D

VAV E W A i,/}i

EEFOUK

T
!

,F{.Q?-,E,::i/

95 I+ ¥
b

BRAIIEXXE

O A
A

FRAXE

I U EEREMIREFE

B OFEE

2, ¢ L L
dgra EXRN G

ZERERD
HERR A2 EE

REPATEEER ™

" IREBAS A ER A AT
| WIS

| REBRTAT

- KERASABRT

| KERRF PR Fh
 KERASIRT

- KRB

T R Bt FRRT
T RREER DR )BT
| RERFEKT

| REERIEET

| RERMETH
 RERBATH

- Ve . . v
3':\\‘}53 Eu: EW’T

PR

X

wE

OF8lcmRS AL ES
 O&E60cmREHAEEES

 O&95cmRE SR EES

- OF45cmBIfEEE. OF70ecmyO—A 45 v Y

REPFRERT

IS SRR

CHRURESHES)IET

ABEEE. OF18cmEHNFEEIE

- O&S50cmR ST R EEE
- O&130cmRE XSS
- OE25cmB T X EEE
- O&E50cmR SR EEE
- O&F40cmR SR EHIE
 O&60cmR SR EEE
- O&E60cmR SR EEE
COF200cmRFAEHE, OF60cmRFAEES
- O&S50cmR ST R EEE
OF81cmRS XL EE
- O&90cmR X LEE
 OE25cmEf X PEIE
| O&40cm R LEE

AF45cmRHFXLEE,. OF40cmRSELTHE

QA& 105cmR S

C#F100cm RS EHE



BIEIDI = WYNR—/\—H'S

il
-n

s xRIEHEIE. ESUVUTHERWVWTRECWEIIE?

DT ERRRES, HIEKTT. MADESTEDIRNNC ST
FHICITSIENTERES, BESIREEE X UHT=L) FHIFXLV. ARTIHATEULOIHRL, ELVSEIALSCZ.

TS ? VAL HERRE

JIbwor— RFE4F IOV T1YT]
BRIE[ S - J'— L 1 DFEREIR




BBl DI WYX —/\—NH'5

[14-1]FHEZERIT 2MEZTZ CAiR K.
LEDME, 5 77/5/ 9 —JIRIF— =95 —
FRADOERd DREZEH AT &,

Planck #E D7 — % %, BHEBEOERERNES &, BHEAFCTE 2 HRIEp187 BZ TULWBAELUFTOBSEIATFEELTLS.
T—=%76 ACDM EFNWVDOINFTRA—=FT—FIL T4y bTHHD% g_ﬂb%'iﬂa,“ﬁ%,’%(dark matter) é:ig'f_ﬂj'?"
AR5 L,

INY TIER =>§5.1.4
e CMB DX 2.72548 + 0.00057 K TH 5. o ,|\§ = A{Z:U)EI'%U) 5,“::':(3:@?:—: LTS,
POMB U, PR S50 2B P g EAARER. RADFTHFEEZSNTVS.

o FH DML, to = 137.98 f&4F £+ 3700 HiETH 5.
o Ny 7TIVERIX, Ho=67.80=+0.77 [km/s/Mpc].

EoTwWa, INFELIEESZIDE IR S,
ZLTC, FHOMKEROHEGEHNT S L, BIEOFH OMMES 5.40 BAEDFHOMM
{ 3 A

Y= IRILF—

IREDFHEISMZEREARL TULS.

BEEOE A, L
%, 69.1% FEARHO (FHAMBWESCLERD) F—r il MERETIVEEFTIES2HICIT,
F—T, 25.9% PIEHEAHO WHE LTHELTVWDLETO) ¥F—7 ThERIEAFRMODIXRIVF—DNET,

RY—=TdHY, YD S50%BMOWMETHA. 2F ), FHERD

_N#Zdark energy&&tI177z.

BRNZIEAARHOWE TH 5 L HiEE N TS (11 5.40). -—_-—- Aﬂ:@_;]z)[/ » @70%%‘:5&35_

o
3@0‘ %( P B 5 7 sl e . \ e =
MBERALIINY ¢t d vt p B oo EREET

L/E (') y I_.I_"_HJ?%\:EE

o » , Z2TR< T
1- 129 - n13 l %e1i R DG o LG LR o x 2% S MhY At e Pooq U7

HRLY, T 51

—H

AR

i

HhD.

3



BBElIDOI "W YNR—/\—h\5

i ) 5.5 FHMDETINERDIZAEDHEGTR ) 5.5.2 F—IIXIF— = p184

=i 7\ B

FHO=H . | B o
s Piff, HE 140 0FFIR %A T35 LR OHA

RILEH 201849H27HO09K25%7
ECH TILEREEN DY), N TEHHE CoUy S 7
<ASTREICEBOIRET 3. By Ny EyIF) X 2277 (@ A-r & AW
Ev777F -

DERY E1RXDT, INTHBUMET .

”a'am 3 2 DEXFDITIED Y KET B D

L ENELEL LD D BECH EHph

T Li ) Dip——, TI¥5 HEB TH<
DI 2 RFE B L2 RR, Dl Ld

Hi1400fFERE "RE KT
7o HHAY & EVRXE BEDF—A

232 6 H, @wxXz b L 7,

EvoIU—-X, EvIF)
REDFIRFHITKEICEARZRIT, TNT
DERAIMIIZIL, PHATEIMART TRE
T OKRED TR RFE .

A= IRIVE-H
BAREINE TS
EHHERE
BT y
&R ey -

4 TL—g0 FH 1, K1 3 8EFRTIC TEy I

EvoyT
FROFT E TREWH) ICko Tkl E @)
FROFIFIMRERZ OO, P ALy XER, FEONE 28R LRI v EFER SRR RS, R R

) . ] , S P FTw3, FH D95 %% HDBLEFEN
iEa \B|EZUHN, 4B S SHFINTRZ S (EKXARHEY)
TZZEAD BTN, RS ESAEEE Haoy T Hﬁ% /'MI/% M |

MFESIRLN, 2 k5T, RS 'Lf YRR A

DT EID, FEBRIIEL 2 DBET FH 5 ER/pns "€y 7Yy 7)) Pl
75 B DI BT B,
HOAH 7 ) I i DI IS TREHER# S 13, 135 S0meE Il
7RIS BEF O H 2 5 ORI | T OS2 B, ST BEWE OETR < Dbl
. I X _ 235 TENV VAR, 2 BEICHRT,
(oo EH T kg™ b 706w e Greod o,
- . ZORR, FH 28T BRIFLY— FZUEERHATE ST, %ﬂﬁa’ ITERD 1
4 {1 ) & sal r : I} ‘ 7 o A AR N
(¢ (‘faMﬁ/?‘fb e ?ﬁﬁ”“ /2‘7\"&77”‘?\(7‘"&”7/??1&% T23eaTlr, OffiE LM (K91 4 0 0fi4F) BEETE B Lpdok, BESAR T851%

 DEDFRM 2 53] L ':TIZHH DEDDBE D R DDEPD T\, LR ’)7":0 Ep A
4 + ( https://arxiv. org/abs/1809 09148 ") THD B, (HILUIEH)



FHERRET PO
(38 £

B4 F5H D INE R
% 2 XOFRA 77 EDRAZRL v

/r ~ 7 l/_:/ = yﬂi‘%% 2 FLa AR AT D - S e

— WMAPHEE

138522
E w4\ R (FR7E)

Y—PIAD dark age
R DEIRE =95 — dark matter
Y—49 IXJLF— dark energy




Finale Zhb S DOFHHEHZE
FDECET IOLEBEIKC XDFEFEHIC IDLEWIRILF—IET

10



NDSDFHIAFR

F. SESER DR

BROUBDANT NU
BEm) 107 107 10" 10? 10° 10 10° 1 10*? 10**
‘ ! | ! ! | | I
FER | R (@ | ¥ ‘ .
4 “?4_7035 B o 1
‘ i) g g g | 2 g B | OH B
JEEER .4 5 ; P HRENEL( x10'' Hz)
(Hz) 30000006 | 30000G 3oooe 300G 30G | 3G 300M 30M  3M | 300k | 30k | 3k | 50-60 10 50 33 25 20 17 14

g - "\:ﬁ § g Q g g e i 6000 K
P o D
T L ' = i o ’ — 5000 K

—4000K
L

v} P
BE(nm) 380 400 500 600 700 780

EDECEXT LDLEEIC LDFMIC KDLEWIXRILF—IET

] 0 5 10 15 20
BE(x107"m)




LS LSRR TRIZKE

OB TR =KD 2t BRIz ® iR T RIS

© B ETSFI
A PR E P - ONASA-ESA

©NASAESA

oJtRER IR

1278 X 58 R §1) Fopes HUIEE O TMB - RLIB
gL

014 Tnm 100nm 10 m Tmm 10cm
14 10nm 12m 100m Tcm m

;/y,(-/;,zyg%a\ﬂ,&ﬁ 17 30 Y 7=t BT=o A5, EMslElc, B4R GEER) « £ (EBER3d07) X (&a387) .
a5, EMSlEIC, EEESE. KEER (8B) . J0F7J 2 7E85H,
(BBSO. NASA. FHMZEMTHAEEEIRE)

L]

http://edu.jaxa.jp/materialDB/html/materials/advanced/chapter1/1_2/1_2 1_a.html
http://www.stelab.nagoya-u.ac.jp/ste-www1/naze/sun/sun52.nhtml 12


http://edu.jaxa.jp/materialDB/html/materials/advanced/chapter1/1_2/1_2_1_a.html

BlER

FTRAIRER
(RAIHRE)

E35E

FRAIRER

V)

"y

() MBTA Corporation Tepan #150132

JINTAICHBDEHARD

$ %R




P~ |

(BHEE) 30m &% TMT (Thirty Meter Telescope)
= d P

T

TRG-0 3 1y B3 FL, TMT g
G RO FRNCEN, Togop LT REFE 7
O-NRY- azdie BEreg 540 WET 3y iur &

AT XJ v ,T-9

@ O%F30m
®0.31-28um b. S

202 A2 LA g -
PR AR (=L e AL 2 Tyl T SHe e Fout- o,

®Hd e NI . S s
A FAUD - D ‘/”’7‘%”:%2@"7'%? ?ﬁ‘l?‘%i@?ﬁmm‘fgéeﬁ]&)um'v?;

F4 - NSF - HE - | &
1 > ROEEIR -
@/\DA - IXIFTF7
® B8 FEH1500{EH
@ 2021 KRB

{

allll
X
=
2l
N
T]
11

2013F12BEHmARAXE - FEHYIBEZRERSI VNI DL, BHIIKDXZA K5

14



FER (CErRRETNAITE ﬁ‘C%ﬂ(I A RO EZEL =
FHEESRDIRE - BREZHDZENTED,

FEHOFRE(L ? SH—DODTHILF—EF?

10ﬂ54§0)$m

~- T S SRR
R CEAARpeL  aieY R EERORE
RN - ()LL)
\l i '
N “ l ',‘ 'Xir‘ :
1

\ REOFH > E
B , = ——
d)ﬂﬁiﬁiﬁd) AL o ’@éxﬂ:g—ca)
a‘z: N P REDIEREE
m—— S | AR d)b@”ﬁ@?b\
Wil ML I .| Hl -

. .'. p .. l' ". - |
MR ST A
-

HDXRAE
IStz

\\\\\\\\\\\\

2013F12BEHmAXE - FEHYIBEZRERSI VNI DL, BHIIEKDRXZ1 K5




(TEkA FHEIERITSIHNFEME ) A3 BOEDOHEE ZREP211

‘Z’éf/ﬂ@ﬁ(:‘pgh 7[!7“’

(™~ 9

XBALHE e o) AR 2
Ny TIVFHERTE 7N
9 & < (550 km) 4 7(90(?;1('??1%&;5‘ . & H V) (700 km)
> g Xig_ AR aENes oM B _
& | B
;é X¥x, H <R FRIMR ﬂﬁ%k@é&ﬁwi”&
Vv - s o - = l ==l
Y HR LB D A IR %< L BERORE
0 100%
i W r V 4
#HX T
o 509 - f /
SIS
Yy v
S § 0% i i 1 } T T
J_jll'é = #HE 0.lnm 1nm 10nm IOOnm l,um 10um IOOum lmm lcm 10cm lm 10m 100m 1lkm
e X ﬁé@ﬁ 300PH; 30PH; 3PH,; 300TH; 30TH, 3TH,; 300GH, 30GH, 3GH; 300MH;30MH,; 3MH; 300KH,
TRILF— 1.24keV 1.24eV 1.24meV 1.2peV

S

Afs KEOE. BREICE > TKRYBATE 20ETHEL BEOFRTHS. LidioT, THELE
WOBIEIZH ECTREZA, o< - X M - RYHRCOBMIIARTRETS 5.

[14-2 ) XFREERA T DO DERZZEFHICTI 5 LITHE

(] H 7 WRICIEXIRIZENM WA S

KR TESHLGWT Y PR
ﬁ'fg‘%ﬁ\&xn% M5 16

[14-3]RIfRIEHR CERRAIT D72 DERIREFHICFT 5 LITDEH(XEH 7




NHSDOFHHAZE
Astro2020 (ZXUAHD10FEEE, 2021F11BHK)

https://www.nationalacademies.org/our-work/decadal-survey-on-astronomy-and-astrophysics-2020-astro2020

(i) Pathways to Habitable Worlds  HEkANEdrfFIZL 5 DD,
KGARNKE T T DIRBEZ RODIFLEDHEEEHE TH—WNICERETII L z2HIET,
(ii) New Windows on the Dynamic Universe #H L\ [ER] CFHEZ&HAIT S
kDB (AR, RAR. BiK. X, AU <) ([CMA T, BEIXR/LF—FHIR.
Za—bU/ EANREWVWOFIEBREANFEZAVWT, RANOYMEFOREBEZEIET.
(iii) Drivers of Galaxy Growth SR/ {tz&ERER & LTEET S
R, %ODﬂS%E’J NENECDOFRHICBOFHEZEMICE > TREROKRAEZ LT 5,

Z DEFBIE * fEAT 5,

|7



NDSDFHIAFR

Astro2020 (ZXUAHD10FEEE, 2021F11BHK)

https://www.nationalacademies.org/our-work/decadal-survey-on-astronomy-and-astrophysics-2020-astro2020

Astro2020 D K 5TIEF & F

Worlds and Suns
@ in Context
;

Great Observatories Mission and Technology Maturation Program o %

OEIIIED O
OmEEEEEEs——TTTD 0 @

Possible X-Ray Probe

Time domain/multi-messenger program New Messengers
and New Physics

Cosmic Ecosystems

18



(KIEREE] NERXBHRE
1960FREIEHN 5 1970F ¥ T T
HTOHEBEFEIZT1969FE7H20H T,
REICBmEZ UV . 1972%F12HI(C
Harrison Schmitt (1935-)

JA

NASAIC KB BAIFEE

D

F izl

EL/TL_

\l

=iz

/

/\

175 dDEugene Cernan

1= ®dDNeil Armstrong (1930-2012) &Buzz Aldrin (1930-

(1934-2017) &



(AE#ZE]  That's one small step for (a) man, one giant leap for mankind.
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only, ah... ah... depressed in the surface about, ah.... 1
or 2 inches, although the surface appears to be, ah...
very, very fine grained, as you get close to it. It's almost
like a powder. (The) ground mass, ah... is very fine.
WEESEMOBID EICII>TVLWS MIFA®mICTA ) FH21FIEE L
ATULSH, ADFRAIIGEDW TR ENRY - DRV IRSH 5 MV,
FEAEMDELDICRZAD AAEILIF>TUERZ TS,

I'm going to step off the LM now.
NEKYVUEERD O B ZEBHEAT,

That’'s one small step for (a) man, one giant leap for

mankind.
_NUF—ADABICEDTIIINSR—HT= ABICE>TIHEKXRS:
RE T Do

MHTHOREmARELII69FETHA20H T, 7R HE115DNeil Armstrong

20



ABFEE] KIERREZFE NASAICL D KBRS PESE

KB DRZNE 95% 23 %
ik %F. R5HEITHLER D
0.75%. =iidaxsE 20°C.
EH 73 HEERD 40%.

-—\ A e :

2 UK YT DBREERICBE L ABRAD/S 5 VER

2012 4 8 B 13 B NASA 5




(AP AE) AZREREFE NASAICK D KERE B P18

(EICIFBEICREDKGFREL 2 (2004 FFHEK)
il TIIRESKDEFEEL TWSA[EEME (2015F9H29HERK)

NEBOARRUESKEBNOMEL UL 7 ZANAKER)ICK > THEWS i

REEEZH 100m ORI IChic> THUPBABUVLWEBEEIRIEDKOFE 25U TWS.
LORAEE EZ=EMNSDEE,

22



GNCEY IREDNXNEMTICKNFED? HEROBEN

Seismic discontinuity in the Martian crust possibly caused by water-filled cracks
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Recent seismic data acquired by the InSight lander have revealed seismic o ' £ 0 ~ crack
discontinuities in the Martian crust that have been interpreted as sharp transitions in 20 1 201 . 201 ol 20 1 Y 20 1. Y
porosity or chemical composition. Here we propose an alternative model in which the Pore cpllapse
due to plastic
transition from dry cracks to water-filled cracks could explain the observed seismic bcrUStal - deformation
asemen
discontinuity in the Martian crust. Our model can explain sharp increases in seismic 30 30 30 30 30 -

velocity and Vp/Vs at ~10 km depth with no associated changes in porosity or chemical
composition. The present model suggests the local existence of liquid water in the

Martian crust, which could potentially serve as a subsurface habitat for life.
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Figure 2. Calculated velocity structure in Martian crust. Model assumed a water-rich fracture layer underlying a dry fracture layer and that
these layers have constant porosity of 0.4%-1.2% down to ~20 km depth. Seismic velocities for water- and gas-filled cracks were calculated
from the effective medium theory using crack aspect ratio of 6 x 10-3. Transition from a dry to a water-rich layer can lead to a significant
increase in seismic velocity, which may explain the observed seismic discontinuity at ~10 km depth at the InSight landing site (gray lines are
seismic profiles from Carrasco et al., 2023). Calculated parameters are listed in Table 1, where reference bulk and shear moduli are derived

from seismic velocities below ~20 km depth from Carrasco et al. (2023).
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NASA’s Bennu Asteroid Sample Contains Carbon, Water
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Implications of asymmetric loss cone distribution on whistler-driven electron precipitation at Mercury
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orbital period semi-major axis  transit duration transit depth geometric probabilinclination invarian , / \
Mercury 0.241 0.39 8.1 0.0012 1.19 6.33 s 4
Venus 0.615 0.72 11.0 0.0076 0.65 2.16 ( i :
Earth 1.00 1.00 13.0 0.0084 0.47 1.65 Py = | =20
Mars 1.88 1.52 16.0 0.0024 0.31 1.71 f =i i B ]
Jupiter 11.86 5.20 29.6 1.01 0.089 0.39 \ E— T
Saturn 29.5 9.5 40.1 0.75 0.049 0.87 - -
Uranus 84.0 19.2 57.0 0.135 0.024 1.09 '

Neptune 164.8 30.1 71.3 0.127 0.015 0.72 \ /
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The figure shows what we believe to be
the local structure of our Galaxy, the
Milky Way. The stars sampled are similar
to the immediate solar neighborhood.
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(HI) distribution define the arms of the
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T77—@E8(2009-2013)IC & B RARERE

KepLER Discovers FIVE EXOPLANETS ) ’ 7 l/ Z ) J = Z
+ Play Audio | + Download Audio | + Join mailing list 2 O ‘I O ﬂz ‘I H 4 E
January 4, 2010: NASA's Kepler space telescope, designed to find Earth-size planets in the habitable

zone of sun-like stars, has discovered its first five new exoplanets.

Named Kepler 4b, 5b, 6b, 7b and 8b, the planets were
announced Monday, Jan. 4, by the members of the Kepler
science team during a news briefing — at the American
Astronomical Society meeting in Washington.

Right: An artist's concept of the Kepler space telescope on a
mission to discover habitable planets outside our own Solar
System. [more — |

"The discoveries show that our science instrument is working =
well," says William Borucki of NASA's Ames Research RS S : :
Center in Moffett Field, Calif. Borucki is the mission's science pnnC|paI mvestlgator "Indlcatlons are that
Kepler will meet all its science goals."

The five planets are quite a bit larger than Earth. Known as "hot Jupiters" because of their high masses
and extreme temperatures, the new exoplanets range in size from similar to Neptune to larger than
Jupiter. They have orbits ranging from 3.3 to 4.9 days. Estimated temperatures of the planets range from
2,200 to 3,000 degrees Fahrenheit, hotter than molten lava and much too hot for life as we know it.

Planet Temperature & Size Transit Light Curves

°F °K
3500° -

3000° Lo Kepler 4b Kepler 5b Kepler 6b Kepler 7b Kepler 8b
Iron melts mp :
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Kepler-22b ::Comfortably Circling within the Habitable Zone

Kepler-22 System

Habitable Zone
Solar System

(j(<<'>>>

Kepler-22b

This diagram compares our own solar
system to Kepler-22, a star system
containing the first "habitable zone"
planet discovered by NASA's Kepler
mission. The habitable zone is the
sweet spot around a star where
temperatures are right for water to exist
in its liquid form. Liquid water is
essential for life on Earth.

Kepler-22's star is a bit smaller than our
sun, so its habitable zone is slightly
closer in. The diagram shows an artist's
rendering of the planet comfortably
orbiting within the habitable zone,
similar to where Earth circles the sun.
Kepler-22b has a yearly orbit of 289
days. The planet is the smallest known
to orbit in the middle of the habitable
zone of a sun-like star. It's about 2.4
times the size of Earth.

Image credit: NASA/Ames/JPL-
Caltech

http://www.nasa.gov/mission_pages/kepler/multimedia/images/kepler-22b-diagram.html
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ABZARNEEDHERZ(20195F)

201941 H23HIRE
#Z 54 NFITRERINIKEGRNWEXEDE (2018 4£ 3 A 10 HIHAE).
[http://exoplanetarchive.ipac.caltech.edu/]
BRINIZHEL FE R
& | Kepler | K2  Astrometry 1
WERE S N7 Kb RV A2 3706 | 2342 | 307 Imaging 44
(confirmed planets)* 3885 359 Radial Velocity 669 707
BHORED S % 5% 612 Transit 2900 3023
(multi-planet systems) 647 Transit timing variations 15
NEZT TV =V IlhbE 290 Eclipse timing variations 9
(HEZE + A RAK) 361 Microlensing 54 7o
fEfil RAK 4496 | 479  Pulsar timing variations 6
(Kepler /K2 Candidates) 2424 | 473 Ppulsation timing variations 2
Orbital brightness modulations 6

http://exoplanetarchive.ipac.caltech.edu

ZREP190
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ABZARNEEDHERE(20205F)

20201 H25HIRTE
# 54 INFEFTIZERINTKERIWEREDOE (2018 4£ 3 A 10 HIRAE).

[http://exoplanetarchive.ipac.caltech.edu/]

ZER SN2 R
& | Kepler | K2  Astrometry 1
WERE S N7 Kb RV A2 3706 | 2342 | 307 Imaging 4 yg
(confirmed planets)* 4108| 2356 | 426 Radial Velocity 669 782
BEOERED G % 5% 612 Transit 2900 3137
(multi-planet systems) 647 Transit timing variations 15 51
NEZT TV =V IlhbE 290 Eclipse timing variations 9 16
(W 7€ + 1B RAK) 361 Microlensing 54 8@
fEfil RAK 4496 | 479  Pulsar timing variations 6 7
(Kepler /K2 Candidates) 2420 | 891 Pulsation timing variations 2
Orbital brightness modulations 6

http://exoplanetarchive.ipac.caltech.edu
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ABZARNEEDHERZN(20215F)

2021F1H16HIRE
# 54 NI TR INIKREGRIVEZEOR (2018 4 3 A 10 HIE).
[http://exoplanetarchive.ipac.caltech.edu/]
BRINIZHEL FE R
& | Kepler | K2  Astrometry 1
WERE S N7 KR R A 3706 | 2342 | 307 Imaging 44 51
(confirmed planets)* 4331| 2414 |450  Radial Velocity 669 826
BHOBED S % 57 612 Transit 2900 3294
(multi-planet systems) 1841 Transit timing variations 15 o4
NEY TV —IZhhbE 290 Eclipse timing variations 9 16
(W 7€ + 1B RAK) 361 Microlensing 54 106
fEafil RAK 4496 | 479  Pulsar timing variations 6 /
(Kepler /K2 Candidates) 2366 | 889 pysation timing variations 2
Orbital brightness modulations 6

http://exoplanetarchive.ipac.caltech.edu

ZREP190
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202251516

20214

:

R

16

R
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Planet Found in Nearest Star System to Earth
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http://jp.arxiv.org/abs/1210.3612
Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System

Megan E. Schwamb, Jerome A. Orosz, Joshua A. Carter, William F. Welsh, Debra A. Fischer, Guillermo Torres, Andrew W. Howard, Justin R. Crepp, William C. Keel, Chris J. Lintott, Nathan A. Kaib, Dirk Terrell,

Robert Gagliano, Kian J. Jek, Michael Parrish, Arfon M. Smith, Stuart Lynn, Robert J. Simpson, Matthew J. Giguere, Kevin Schawinski

(Submitted on 12 Oct 2012)
We report the discovery and confirmation of a transiting circumbinary planet (PH1) around KIC 4862625, an eclipsing binary in the Kepler field. The planet was discovered by volunteers searching the first six

Quarters of publicly available Kepler data as part of the Planet Hunters citizen science project. Transits of the planet across the larger and brighter of the eclipsing stars are detectable by visual inspection every
~137 days, with seven transits identified in Quarters 1-11. The physical and orbital parameters of both the host stars and planet were obtained via a photometric-dynamical model, simultaneously fitting both the
measured radial velocities and the Kepler light curve of KIC 4862625.The 6.18 $\pm$ 0.17 Earth radii planet orbits outside the 20-day orbit of an eclipsing binary consisting of an F dwarf (1.734 +/- 0.044 Solar
radii, 1.528 +/- 0.087 Solar masses) and M dwarf (0.378 +/0 0.023 Solar radii, 0.408 +/- 0.024 solar masses). For the planet, we find an upper mass limit of 169 Earth masses(0.531 Jupiter masses) at the 99.7&
confidence level. With a radius and mass less than that of Jupiter, PH1 is well within the planetary regime. Outside the planet's orbit, at ~1000 AU, a previously unknown visual binary has been identified that is
bound to the planetary system, making this the first known case of a quadruple star system with a transiting planet.
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The Alpha Centauri Star System

European
Southern
Observatory

Ipha Centauri A&B

Proxima Centauri -

This image shows the closest stellar system to the Sun, the bright double star Alpha Centauri AB and its distant and faint
companion Proxima Centauri. In late 2016 ESO signed an agreement with the Breakthrough Initiatives to adapt the VLT
instrumentation to conduct a search for planets in the Alpha Centauri system. Such planets could be the targets for an
eventual launch of miniature space probes by the Breakthrough Starshot Initiative.

http://www.eso.org/public/images/esol 702b/
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+ES+ es01629 — Science Release SPACE SCCOCP

+ Planet Found In Habitable Zone Around Nearest
oo Star

Observato ~
' Pale Red Dot campaign reveals Earth-mass world in orbit around 70 TN T ‘/9 2
Proxima Centauri A D5 AE

24 August 2016

ZAx9 - 77 9Vb

0.05 au (975058 km) ODIEE#
Z11.2H CRER

EKE =0 1.3

INEY TILY—VA
RAIKDKZBE I 5 A EeE

Astronomers using ESO telescopes and other facilities have found clear evidence of a planet orbiting the closest
star to Earth, Proxima Centauri. The long-sought world, designated Proxima b, orbits its cool red parent star every
11 days and has a temperature suitable for liquid water to exist on its surface. This rocky world is a little more
massive than the Earth and is the closest exoplanet to us — and it may also be the closest possible abode for life
outside the Solar System. A paper describing this milestone finding will be published in the journal Nature on 25
August 2016.

http://www.eso.org/public/news/eso 1629/

At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (a Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun’s closest stellar neighbour and one of the best-studied low-
mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass
of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray
luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a
period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface.
Nature, 2016, vol. 536, p. 437-440
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NASA Planet Hunter Finds Earth-Size Habitable-Zone World

TOI 700 d

TOr 700 b

o .
TOI 700 ¢

Habitable Zone

TOI 700 b TOI /700 ¢ 1Ol 700 d

https://www.youtube.com/watch?time continue=88&v=QUO0OgsIGS6MQ
https://www.jpl.nasa.gov/news/news.php?release=2020-002&rst=7569
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sEuropa Mission Wins Big in New NASA Budget
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Jupiter’s ocean-bearing moon Europa
E
NASA begins the new year with an unexpected budget bump from Congress, which added $530 © 5
million to President Barack Obama’s request before adjourning for the holidays. The space 3 %
agency's $18 billion budget for the year that began Oct. 1 is part of the $1.1 trillion spending o o
plan Obama signed last week. ©)
More than half the bonus is earmarked for the new heavy-lift Space Launch System rocket, $e=80 Ay=8 VYo=9 0;=86 Ay=54 Wo=8 =93 Ay=105 Yo=-1 @ps=99 Ay=156 W=7 0ue=107 Ay=214 y, =9
which is expected to debut in 2018. NASA will now spend $1.7 billion on the program through B\, B\ B l B/ B/
the fiscal year ending Sept. 30, 2015, an increase of $320 million above the White House’s
request.
The other prime beneficiary is NASA’s planetary science program, which ends the year with . . .
$1.44 billion in its budget, an increase of $157 million. Congress set aside $100 million to begin httD //WWW SCIenCemag . OI’g/CO nte nt/343/61 67/1 71 f|g ures-on Iy

work on a mission to Jupiter’s ocean-bearing moon Europa. The Obama administration had
requested $15 million.

PHOTOS: Exquisite Exoplanetary Art

http://news.discovery.com/space/private-spaceflight/europa-mission-wins-big-in-new-nasa-budget-141226.htm 62
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Latest Related Europa Clipper

NASA Scientists Confirm Water Vapor on

Europa
2 months ago

Key Facts About Europa Clipper

Spacecraft Type: Orbiter

Europa Clipper's Mission to Jupiter’s Icy
Moon Confirmed
5 months ago

Launch Window Opens: October 10, 2024

Science Instruments: 9

Science Target: Europa

Europa Clipper High Gain Antenna
Undergoes Testing at Langley

70 months ago

Aug. 20, 2019

Jupiter Orbit Insertion: April 2030

Europa Clipper's Mission to Jupiter's  EEIERIES
lcy Moon Confirmed

Joan Stupik, Guidance and Control Engineer

70 months ago

What will Europa Clipper do?

Radiation Maps of Jupiter's Moon Europa: An icy ocean world in our solar system that could tell us more about the potential for life on other worlds is

Key to Future Missions coming into focus with confirmation of the Europa Clipper mission’s next phase. The decision allows the mission Eu ropa Clipper’s main science goa| is to determine whether there
2 years ago to progress to completion of final design, followed by the construction and testing of the entire spacecraft and _ .
science payload. are places below the surface of Jupiter’s icy moon, Europa, that

“We are all excited about the decision that moves the Europa Clipper mission one key step closer to unlocking the could support life.

Europa’s Ocean Ascendin
P 5 mysteries of this ocean world,” said Thomas Zurbuchen, associate administrator for the Science Mission

2 years ago Directorate at NASA Headquarters in Washington. “We are building upon the scientific insights received from the
flagship Galileo and Cassini spacecraft and working to advance our understanding of our cosmic origin, and even
NNCA Llacd~ 1l viAa NMNicmiimrmiAam mhAaiid CrivAanma |Ife elseWhere”
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Liftoff! NASA's Europa Clipper Salls Toward Ocean Moon of Jupiter
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Ebisuzaki, Maruyama (2017) GeoSci. Frontiers 8, 275-298

Mechanism of geyser
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Near-collapse of the geomagnetic field may have

contributed to atmospheric oxygenation and animal

radiation in the Ediacaran Period
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Fig. 3 | Paleointensity, oxygen and animal evolu-
tion. a Field strength constrained from select Thel-
lier (thermal) SCP studies (blue squares, hexagons)
and bulk rock studies (gray squares) updated from
Zhou et al.”*, with new time-averaged SCP results
(red hexagons) reported here. Large squares are
time-averaged paleomagnetic dipole moments;
small squares are virtual dipole moments (VDMs).
Gray circles are select Phanerozoic VDMs from
Bono et al.'. Field evolution model (3450 Ma to
565 Ma, red line) is weighted second-order poly-
nomial regression of Precambrian field strength data
from Bono et al.’; 565 to 532 Ma trend from Zhou
et al.”>. b Cryogenian to Cambrian field strength
evolution corresponding to dashed rectangle in (a).
Open circles are results from non-Thellier methods
(non-thermal and thermal) and their sizes are
weighted by the numbers of cooling units from Zhou
etal.”’. Key: green, microwave method; purple, Shaw
method; black, Wilson method. Brown open circles
are Thellier thermal results. Ultra-low time averaged
field interval (UL-TAFI) highlighted by light pur-
ple rectangle. Also shown are selenium isotopic data
(open symbols) and oxygenation interpretation
from Pogge von Strandmann et al.”’ (shown here
with a 25 my window mean and 1o error), summary
animal radiation of bilaterian and non-bilaterians
from Zhuravlev and Wood"’), Wood et al.”, Darroch
et al.”” and Muscente et al.”’, and Shuram excursion
ages from Rooney et al.”.
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http://breakthroughinitiatives.org/Initiative/3

The story of humanity is a story of great leaps — out of Africa, across oceans, to the skies and into space. Since Apollo 11's ‘moonshot; we have been sending our

machines ahead of us - to planets, comets, even interstellar space.

But with current rocket propulsion technology, it would take tens or hundreds of millennia to reach our neighboring star system, Alpha Centauri. The stars, it

seems, have set strict bounds on human destiny. Until now.

In the last decade and a half, rapid technological advances have opened up the possibility of light-powered space travel at a significant fraction of light speed.
This involves a ground-based light beamer pushing ultra-light nanocrafts — miniature space probes attached to lightsails - to speeds of up to 100 million

miles an hour. Such a system would allow a flyby mission to reach Alpha Centauri in just over 20 years from launch, beaming home images of its recently-

discovered planet Proxima b, and any other planets that may lie in the system, as well as collecting other scientific data such as analysis of magnetic fields.

Breakthrough Starshot aims to demonstrate proof of concept for ultra-fast light-driven nanocrafts, and lay the foundations for a first launch to Alpha Centauri
within the next generation. Along the way, the project could generate important supplementary benefits to astronomy, including solar system exploration and

detection of Earth-crossing asteroids.
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FLAMINGO: dark matter, ordinary matter, and neutrinos in the biggest cosmological simulation ever

Full-hydro Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations.

https://flamingo.strw.leidenuniv.nl

The FLAMINGO project

Key features:

e Three resolutions: high/m8 (baryonic particle mass
mg = 1.3 X 10% Mg ), intermediate/m9 (mg = 1.1 x 10°
M), and low/m10 (mg = 8.6 x 10° Mg)

e Flagship simulations: 2.8 Gpc box size at m9 resolution (L2p8_m9) and 1 Gpc at m8 resolution (L1_m8)

e Upto 3 x10" particles (2 x 5040° + 28003)

e Subgrid feedback is calibrated to the z=0 galaxy stellar mass function and low-z cluster gas fractions using Gaussian
process emulation

e Massive neutrinos are modeled using particles with the '6f' method that was designed to reduce shot noise

e Twelve L1_m9 variations: eight simulations varying the calibration data and four varying the cosmology

e Full-sky lightcone particle data and HEALPix maps for up to 8 different observer locations

e Run with the Swift code and SPHENIX smoothed particle hydrodynamics implementation

e 3-fluid initial conditions with separate transfer functions for CDM, baryons and neutrinos, perturbing particle masses rather
than positions to suppress discreteness noise

3



|
I’

493 ) NUA I EZ21—FI) ) EEBRBUEEBERKODFERYI1L—3 Y

FLAMINGO: dark matter, ordinary matter, and neutrinos in the biggest cosmological simulation ever

Full-hydro Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations.

https://flamingo.strw.leidenuniv.nl
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\ﬁéeo Gravitational Wave Open Science Center

ﬁ Data~ Software~ Online Tools~ About GWOSC~

The Gravitational Wave Open Science Center provides data from
gravitational-wave observatories, along with access to tutorials and
software tools.

https://www.gw-openscience.org
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O4a (2023/5/24 - 2024/1/16)
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N\Mﬁ GraceDB Public Alerts ~ Latest Search Documentation Login

Please log in to view full database contents.
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LIGO/Virgo/KAGRA Public Alerts

04 Significant Detection Candidates: 185 (205 Total - 20 Retracted)

04 Low Significance Detection Candidates: 3232 (Total)

25FERRMSERDIED

IR—IANEM

Event ID

S241210fu

S241210cw

S241210d

S241201ac

S241130be

Possible Source (Probability)

BBH (98%), Terrestrial (2%)

BBH (>99%)

BBH (97%), Terrestrial (3%)

BBH (97%), Terrestrial (3%)

BBH (>99%)

Significant

Yes

Yes

Yes

Yes

Yes

More details about public alerts are provided in the LIGO/Virgo/KAGRA Alerts User Guide.

Dec. 10, 2024
12:09:00 UTC

Dec. 10, 2024
06:06:06 UTC

Dec. 10, 2024
02:33:35 UTC

Dec. 1, 2024
05:57:58 UTC

Nov. 30, 2024
11:04:22 UTC

Less-significant events are not shown by default. Press "Show All Public Events" to show significant and less-significant events.

GCN Circular Query
Notices | VOE

GCN Circular Query
Notices | VOE

GCN Circular Query
Notices | VOE

GCN Circular Query
Notices | VOE

GCN Circular Query
Notices | VOE

Location

Retractions are marked in red. Retraction means that the candidate was manually vetted and is no longer considered a candidate of interest.
Less-significant events are marked in grey, and are not manually vetted. Consult the L\VK Alerts User Guide for more information on significance in O4.

1 per 1.1631 years

1 per 50.02 years

1.3855 per year

1.3638 per year

1 per 165.67 years

Comments
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Geweeniecre - The important thing is not to stop questioning.

s - Curiosity has its own reason for existing. One
cannot help but be in awe when he contemplates
the mysteries of eternity, of life, of the marvelous

r “ N structure of reality. It is enough if one tries merely
' QUQtabl@ to comprehend a little of this mystery every day.

Never lose a holy curiosity.
Emstem
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Collected and Edited by Alice Calaprice

£ - Education is what remains after one has forgotten
' what one has learned in school.
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